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Abstract — This paper explores, with numerical case studies, 
the performance of an optimization algorithm that is a variant of 
EPSO, the Evolutionary Particle Swarm Optimization method. 
EPSO is already a hybrid approach that may be seen as a PSO 
with self-adaptive weights or an Evolutionary Programming 
approach with a self-adaptive recombination operator. The new 
hybrid DEEPSO retains the self-adaptive properties of EPSO but 
borrows the concept of rough gradient from Differential 
Evolution algorithms. The performance of DEEPSO is compared 
to a well-performing EPSO algorithm in the optimization of 
problems of the fixed cost type, showing consistently better 
results in the cases presented. 
 

Index Terms — Evolutionary Particle Swarm Optimization, 
Differential Evolution, fuzzy clustering, unit commitment, PAR 
location. 

I. INTRODUCTION 

HIS paper presents a new approach to build a hybrid 
between Evolutionary Programming, Particle Swarm 
Optimization and Differential Evolution. The reason 

behind the search for hybrid algorithms is that each "pure" 
method exhibits some characteristics that push the search for 
the optimum in a globally right direction. However, each 
method also displays its own difficulties. The hope is that, by 
suitably blending methods, a more robust and general method 
may be derived. 

The work reported in this paper departed from an algorithm 
denoted EPSO, for Evolutionary Particle Swarm Optimization. 
The basic version of this algorithm was presented in 2002 [1] 
and introduced as a way "to join together the exploratory 
power of PSO (Particle Swarm Optimization) with the self-
adaptation power of Evolutionary Algorithms (EA) and have 
as a result the best of two worlds". The results obtained in 
competition with classical versions of PSO were indeed 
promising and this was demonstrated by several authors and in 
several publications. Early reports as well as more recent 
works [2]-[16] confirmed the quality and reliability of the 
algorithm as well as its good performance in a diversity of 
domains. The EPSO algorithm then received further 
improvement and the latest version is available from [17], 
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where examples and a source code are made public. 
In a parallel path, the Differential Evolution concept (DE), 

early proposed in [18][19], has motivated many proposals for 
improvement and variants. A comprehensive survey may be 
found in [20]. In this survey, the allegations that DE is a fast 
and general optimization method for any kind of objective 
function are substantiated, although the authors caution 
against a hasty conclusion, reminding the reader of the No 
Free Lunch theorem. In particular, the attempts to generate a 
synergy of DE with PSO are well documented in this survey. 
Many of the proposed hybrid models adopt a form of alternate 
use of DE and PSO iterations or DE and PSO operators 
[21][22] or even some mixture of operators [23][24]. These 
references are just examples and not to be taken as exhaustive. 

Adaptive versions of DE have been attempted also with 
many variations [25][26]. The pursuit for successful self-
adaptive schemes is justified by the desire to achieve some 
algorithmic form close to a non-parametric or parameter-free 
definition. This search is also the motivation behind the 
inception of the EPSO algorithm. 

The advanced version of the EPSO algorithm included the 
positive effect of a probability of communication among 
particles, implementing the scheme of the "stochastic star". Its 
success reinforced the idea that a degree of controlled random 
variation is beneficial to the search for the optimum. 
Therefore, the idea that some noise could be added to the 
EPSO search by embedding a DE operator in the global 
mechanism of the generation of new particles is worth 
exploring. 

This paper presents a new hybrid DE-EA-PSO, denoted 
DEEPSO. As in many other cases, there is no deductive 
demonstration of superiority over other options but illustration 
by example. A didactic and a complex study case will be 
presented, in the domain of power systems, to put in evidence 
the strong points of the new approach. There is no comparison 
with DE, as the purpose is to show that the modification does 
improve EPSO. The benchmarking of EPSO with DE has been 
made by some authors, such as in [27]. 

II. BASIC MODELS 

A. PSO as a recombination process 

The PSO – Particle Swarm Optimization [28] does not rely 
on a selection operator as its driving force: it depends on a 
movement rule that generates new individuals in space from a 
set of known alternatives, called a swarm (the same as 
population). Several variants have been proposed but the basic 
movement rule, producing a new individual X for iteration 
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(k+1) is based on 

 (k 1) (k) (k)  X X V  (1) 
where V is called the particle velocity  and is defined by  

 (k 1) (k) (k) (k)
i G( ) ( )     V AV B b X C b X  (2) 

where bG is best point so far found by the swarm and bi is the 
best past ancestor in the direct life line of the particle, with 

i b{ , i 1,..., no. particles} b P  forming the set of the historical 

past best ancestors of each particle. Of course, G bb P . 

The parameters A, B, C are diagonal matrices with weights 
defined in the beginning of the process. In a classical 
formulation, the parameter A is affected by a decreasing value 
with time (iterations), while the initial parameters B and C are 
successfully multiplied by random numbers [28] sampled from 
a uniform distribution in [0,1]. 

From eq. (1) and (2) we conclude that a new particle 
(k 1)X is formed as a combination of four other points: 

o Its direct ancestor (k)X  

o The ancestor (k 1)X of its ancestor (k)X  
o A (possibly) distant past best ancestor bi 
o The current global best of the swarm bG. 

We can give a different aspect to the movement rule in (2): 

 (k 1) (k) (k 1)
i G(1 )       X A B C X AX Bb Cb  (3) 

In this expression, the sum of the parameters multiplying 
the four contributors to generate the offspring is equal to 1. It 
is therefore tempting to identify this expression with an 
intermediary recombination in EA with 4 parents and a special 
rule to determine who the parents are (they are not randomly 
selected). This means that we are considering an enlarged 
population including not only the active particles but also the 
immediate ancestors and the set of the past best ancestors. 

B. EPSO as an evolutionary adaptive recombination 

The idea behind the EPSO algorithm was to provide 
adaptive capability to this recombination operator. To achieve 
this, the parameters in (2) are subject to mutation and selection 
in order to try to achieve a higher progress rate. 

Given a population with a set of particles, the general 
scheme of EPSO became: 

REPLICATION ‐ each particle is replicated (cloned) r 
times [usually r = 1] 

MUTATION ‐ all r particles have their A,B,C parameters 
mutated 

REPRODUCTION ‐ each of the r+1 particles (original and 
clones) generate an offspring through recombination, 
according to the particle movement rule (2) or (3) 

EVALUATION ‐ the offspring have their fitness 
evaluated 

SELECTION ‐ by stochastic tournament or other 
selection procedure (among siblings), the best child 
from each ancestor survives to form a new generation 
‐ every individual in the previous generation has one 
descendant. 

The mutation of any parameter A,B,C (represented by w in 
the following) is ruled by multiplicative Lognormal random 

numbers such as in   )1,0(logN ww i
*
i or by additive 

Gaussian distributed random numbers such as in 

)1,0(N ww i
*
i  . The learning parameter ( or ) must be 

fixed externally. The recombination operator is defined by the 
set (A,B,C). The scheme results in an adaptive recombination 
operator. 

The EPSO algorithm was further improved in efficiency by 
the introduction of two additions. In early versions, it was 
shown that noise affecting the exact location of bG was 
beneficial, so a forth parameter or weight in the form of a 
diagonal matrix wG was introduced, such that  

 *
G G G(1 N(0,1)) b b w  (4) 

This weight is also subject to mutations of the kind referred 
to above, so it also enters in the self-adaptive model. 

Finally, in the most recent and efficient version, the 
Communication Factor P was introduced, creating a 
Stochastic Star communication topology among the swarm. 

The recombination (or movement) rule for EPSO becomes 

 (k 1) (k) (k)  X X V  (5) 

 (k 1) (k) (k) * (k)
i G( ) [ ( )]     V AV B b X P C b X  (6) 

P is a diagonal matrix affecting all dimensions of an 
individual, containing binary variables of value 1 with 
probability p and value 0 with probability (1-p); the p value 
(communication probability) controls the passage of 
information within the swarm and is 1 in classical 
formulations (the star).  

This stochastic scheme conceptually oscillates between the 
star arrangement and a selfish version called cognitive model 
in [28], where no communication exists. In fact, the stochastic 
star causes that some components of the global best become 
"known" by a particle while other components are ignored, so 
that the production of a new particle is affected in different 
ways in its distinct dimensions. This favors the uncoupling of 
the evolution for all the dimensions. 

Experiments in a diversity of problems made it quite clear 
that one could achieve a fine tuning of the convergence of 
EPSO by adequately setting a value for p, the communication 
probability [13].  

 

 
Fig. 1. Rosenbrock function in 30 dimensions after 100000 fitness function 
evaluations – average and RMSE of achieved error values for 20 runs with 
EPSO, as a function of the communication probability p – from [13]. 
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In many problems, p = 0.75 seems a very good option but in 
some problems a much lower value favors the convergence. 
Figure 1 from [13] illustrates the sharp tuning in error, 
achieved for p = 0.75 in the Rosenbrock function problem in 
30 dimensions (note the logarithmic scale). 

C. Differential Evolution 

The original idea behind DE, given a population (swarm)   
of individuals (particles, vectors), is to generate a new solution 
from an existing individual by adding some fraction of the 
difference between two other points Xr1 and Xr2 sampled from 
the population or swarm. Then, having a new population 
generated, some further recombination ensures more diversity 
and a selection procedure produces a new generation. This 
selection is elitists and one-on-one based, meaning that each 
parent competes for survival directly with its single offspring 
and the best is retained. 

There are many variations to this scheme. One interesting 
case is the one that was denoted DE2 in [18], DE/rand-to-
best/1 in [19] and DE/target-to-best/1 in [20], where the 
generation of a new individual may be written as 

 (k 1) (k) (k)  X X V  (7) 

 (k) (k)(k 1) * (k)
Gr1 r2( ) ( )    V B X X C b X  (8) 

A notation slightly distinct from the usually seen in the DE 
literature is adopted here to enhance the similarities with (1) 
and (2), i.e. between DE and PSO in the process of generating 
new individuals. The canonic version of DE makes C = 0; the 
canonic DE/target-to-best/1 version makes B = C. 

Neglecting recombination, DE then proceeds with a parent 
selection (choosing the next generation from both the parent 
and offspring populations) of a special type – each parent 
competes only with its offspring – while PSO adopts in a way 
a trivial survivor selection (the next generation is chosen 
among the offspring only). 

EPSO has also a special survivor selection procedure where 
competition is established only among the direct descendants 
of each particle.  

III. THE DEEPSO ALTERNATIVE 

The DE scheme, in a way, makes a sample of a local macro-
gradient of the objective function by picking up two random 
individuals from the population. The same kind of sampling is 
produced by the PSO movement equation, but picking up the 
current position and the particle past best. So, it is natural to 
ask if the DE scheme would not work also when inserted in 
the PSO equation. 

Also, the DE scheme is usually based on fixed B parameter 
values in [0.1, 1]. One must refer that in [8] the authors 
claimed to have a self-adapting process for this parameter; 
however, its value would only change with a certain 
probability (0.1), remaining fixed most of the time, so it must 
be seen as a quite modest effort into self-adaptation. But the 
EPSO scheme is truly self-adaptive, so it is natural to wonder 
if the EPSO scheme would not work also when acting over the 
DE parameter. 

This reasoning led to the proposal of the model that will be 
denoted DEEPSO to clearly express its hybrid character. The 
DEEPSO algorithm is equal to the EPSO sequence; however, 
to grasp the flavor of DE, the following general equation 
should now express the movement rule: 

 (k) (k)(k 1) (k) * (k)
Gr1 r2( ) [ ( )]     V AV B X X P C b X  (9) 

where *
Gb  is given by (4). In (9), (k)

r1X  and (k)
r2X should be 

any pair of distinct particles, in principle belonging to the set 
PC of the particles in the current generation. But extensive 
testing led to an improved proposal, which regains back the 
spirit of PSO and also retains the spirit of DE. First of all, PSO 
relies on macro-gradients being sensed by a particle. So, these 
particles should be ordered such that, for minimization,   

 f( (k)
r1X ) < f( (k)

r2X ) (10) 

Then, one may enlarge the definition of which set must 
these particles be sampled from: this may be the set PC of 
particles from the current generation or the set Pb of historical 
past best particles. Finally, the DEEPSO model defines that  

(k)
r2X  equal to (k)X  so only (k)

r1X  is sampled. 

To complete the model, the sampling of (k)
r1X (= (k)

r1b ) 

among Pb may repeated for each component of V to be 

calculated. This means that one is, in fact, calculating (k)
r1X  

from a uniform recombination of all the particles in Pb. The 
equations regulating DEEPSO are, therefore, 

 (k 1) (k) (k)  X X V  (11) 

with (k)V  in 4 versions: 
1. DEEPSO Sg (sampling in the same generation):  

 (k) (k)(k 1) (k) * (k)
Gr1( ) [ ( )]     V AV B X X P C b X  (12) 

with { (k)
r1X , (k)X } ordered according to (10) and (k)

r1X

sampled once from the current generation. 

2. DEEPSO Sg-rnd: the same but with (k)
r1X re-sampled in 

the current generation for each component of V. 
3. DEEPSO Pb (sampling from the past bests):  

 (k)(k 1) (k) (k) * (k)
Gr1( ) [ ( )]     V AV B b X P C b X  (13) 

with { (k)
r1b , (k)X } ordered according to (10) and (k)

r1b sampled 

once from Pb . 

4. DEEPSO Pb-rnd: the same but with (k)
r1b re-sampled 

among Pb for each component of V. 
In the following sections, some examples will be presented 

to ilustrate the virtues of the DEEPSO scheme. 

IV. DEEPSO VS. EPSO 

A. Fuzzy clustering 

The first example to show that EPSO is indeed improved 
concerns an application to fuzzy clustering with the fuzzy c-
means algorithm [31]. It is an example of a continuous 
function where EPSO is expected to behave well. 

The fuzzy c-means algorithm minimizes the following 
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function: 

 
N Cl m 2

ij i ji 1 j 1
J u || ||

 
   X C  (14) 

where Xi is a member of the set of d-dimensional data, m is 
any real number greater than 1, uij is the degree of membership 
of Xi in the cluster j, Cj is the d-dimension center of the 
cluster, and ||*|| is any norm expressing the similarity between 
data and the centroids.   

Comparative tests have been done in a set of problems. A 2-
dimension problem is depicted in Fig. 2 (coordinates in 
integers may be inspected directly). Fig. 3 makes it evident 
that the DEEPSO concept seems to bring value to the swarm 
optimization. It displays the value of the objective function 
(14), on an average of 20 runs, for three experiments, using a 
swarm of 8 particles, and with the best tuned parameters for 
each model: 
 EPSO with p = 0.1 (best value) 

 DEEPSO Sg-rnd as in (12), i.e. sampling (k)
r1X  in the 

current generation PC 
 DEEPSO Pb-rnd as in (13), sampling in the set of past 

bests of the particles Pb. 
This example is interesting because it convincingly argues 

for the advantage of sampling within the population instead of 
using the canonic PSO choice. 

 
Fig. 2. Three clusters and the trajectory of the centroids during one run of the 
optimization process with EPSO. Point coordinates are integer numbers. 

 

 
Fig. 3. Value J of the fuzzy c-means function plotted against the number of 
generations for EPSO and 2 versions of DEEPSO. 

B. Unit commitment 

The problem of unit commitment in power systems is 
mathematically defined as a fixed cost problem or a mixed-
integer non-linear programming problem: given a set of 
generators and their generation cost curves, define which 

generators should be shut down and which should be in 
service and at which loading level, in order to minimize the 
overall cost (start up costs plus operation costs). 

Because of technical limits, the domain of a generator is not 
connected – there is a point (0,0) corresponding to generator 
shut down and then there is a gap until a point (Pmin, c(Pmin)) 
corresponding to the technical minimum of the machine. This 
general shape of the cost functions implies that the problem 
has a non-convex nature – therefore, many local optima may 
appear. 

An illustrative problem of this type was included in [31], 
where a preliminary suggestion for a DEPSO algorithm was 
formulated. The data are: 

o the number of generators – ngen = 5 
o the parameters of the cost function of each generator – 

this function is assumed to be a cubic polynomial, with 

4 parameters ai,  i=1 to 4: 3
3

2
210 PaPaPaaC   

where C is the generation cost in $/hour and P is the 
generator output in MW. 

o the technical minimum and maximum of each generator 
Pmin and Pmax. 

o the load, located at a single bus (transmission system 
neglected): L = 15 MW (see [32]). 

The objective is to minimize the sum of the costs for the 
five generators, noting that the domain of each variable is not 
continuous.  

The cost curves and technical limits are given as: 

Generator a0 a1 a2 a3 Pmin Pmax
g1 1 0,5 0,1 0,03 0 or 1 10 
g2 2 0,4 0,2 0 0 or 2 10 
g3 4 0,3 0,3 0 0 or 7 10 
g4 6 1,5 0,15 0 0 or 2 10 
g5 0 4 0 0 0 or 1 10 

 
The optimal solution is 

g1 g2 g3 g4 g5 Cost 
3.414 4.586 7 0 0 33.9068 

 
Adopting a swarm of 16 particles, in 100 trials with random 

initialization and 1000 iterations, the number of times the 
optimal solution was discovered is the following: 

EPSO DEEPSO Sg-rnd DEEPSO Pb-rnd
46% 71% 81% 

 
The same conditions were kept for all experiments – namely 

initializing the weights with A = 0.1, B = C = 0.5, wG = 0.1,  
= 0.1 and p = 0.3. For less iterations or smaller populations, 
the same difference in performance was observed. 

This result is yet another argument in favor of the superior 
performance of the DEEPSO versions, with advantage to 
DEEPSO Pbest. 

C. PAR/PST location and sizing in power grids 

A Phase Angle Regulating (PAR) transformer of a Phase 
Shifting Transformer (PST) is a special arrangement of power 
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transformers used to control the flow of active power in 
meshed three phase power system transmission grids. Because 
the power through a line is roughly proportional to the sine of 
the angle between voltages at the sending and receiving ends 
of a line, the control of such angle may re-route power through 
alternative paths in the system, preventing overloads and 
giving better use to the transmission capacity available. 

This comes at a high capital cost per device but it may be 
compensated by avoiding costly line reinforcements or 
allowing a more flexible operation with higher security and 
reduced operation costs. 

Given a set of load scenarios as well as wind power 
scenarios, a system operator may be faced with the need to 
curtail wind generation (at a cost) and replace it by 
conventional generation (at a cost) or, in more severe cases, to 
curtail load (at the highest cost of power not supplied). 
Instead, the suitable location of PAR transformers and their 
optimal dimensioning (in terms of the maximum angle they 
may inject in a line, admitting that they are of the variable 
phase shift type) may serve to reduce or eliminate such 
curtailment needs. 

The capital cost of each PAR may be modeled as being 
composed of a fixed cost plus a non-linear variable cost which 
is a function of the maximum angle that the PAR may inject. 
Some candidate locations in the power network must be 
specified and, in each location, a tentative device allocation 
may be defined. This forms a possible solution to the problem, 
which must be evaluated by solving the power flow equations 
in all scenarios considered and deciding if and how much 
power must be curtailed and of what nature: wind generation 
or load. 

Furthermore, each scenario may have a probability of 
occurrence associated. The problem becomes of the type of 
stochastic optimization. In the following paragraphs we will 
describe a model for this problem and its application to a 
realistic problem built around the IEEE RTS 24 bus system.                                                                                      

 
Fig. 4. Equivalent circuit for a PAR 

 
The equivalent circuit for a PAR is in Fig. 4. Its effect is to 

force to a power flow from node k to node m: 

  p m k m k m
pm

km km km km

( )
P

X X X X

          
     (15) 

So this is equivalent to having a series reactance Xkm plus a 
power injection which will be a load in node k and a 
generation in node m. This allows a network power flow 
model to be written, as a function of .  

Given a specific set of N candidate locations to install a 
PAR and considering a generation system composed only of 
conventional units, the allocation and sizing of PAR is defined 
by the following 

 
N Max 2

k i ii 1
min J u (A B( ) ) Penalties


     (16) 

where ui is a binary variable representing the installation of a 

PAR on  location i, A and B are cost constants and Max
i is 

the maximum angle introduced by the device at location i. The 
constraints are the usual power flow equations of the DC 
model, incorporating eq. (15), plus limits on generation and on 
line flows and limits on the PAR angles: 

 min max
i i i      (17) 

These constraints may be transformed into penalties, in eq. 
(16), when adopting a meta-heuristic as the solver. Finally, the 
penalty term will include if necessary the cost for load 
curtailment, which is usually modeled as fictitious generators 
by the loads with generation cost equal to the usually high cost 
of power not supplied. 

The objective function is further modified when in the 
presence of wind power, because there is also the possibility to 
spill wind (disconnect wind generation) if necessary, to assure 
the network security described by the constraints. This may be 
represented as a negative load which is supplied at the cost 
associated with wind curtailment (compensation to wind 
power producers).  

The wind power resource may be represented by a set of S 
scenarios stratified according to a Weibull distribution, 
associating each scenario k with a probability value pk. This 
allows a stochastic optimization model to be built where a 
solution is evaluated in all S scenarios: 

 
S

kk 1 k
min J p J


   (18) 

A chromosome for an EPSO algorithm will have a length of 

N and each component i is a proposal for max
i at location i.  

This model was applied to the IEEE RTS 24-bus test system 
[33], with 8 possible locations for PAR. This is a realistic 
power system; data have been adjusted to fit in the problem of 
optimal PAR location. A comparison among EPSO and 
DEEPSO variants is presented in Fig. 5 for 100 runs of each 
algorithm, with a swarm of 30 particles. 

The figure counts how many times each algorithm reached 
the optimum, in 100 runs, with varying number of generations. 
The DEEPSO Pb-rnd algorithm displays remarkable 
superiority: at 60 generations it had already reached a 96% 
efficiency in finding the optimum. In second place, we meet 
the DEEPSO Pb and the original EPSO algorithms with 
similar development. The algorithm using the DE trick with 
particles in the same generation lags definitely behind. 

 

 
Fig. 5. Number of hits on the optimum (y-axis) vs. number of generations (x-
axis) in 100 runs for EPSO and 4 DEEPSO variants. 
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V. CONCLUSION 

The examples shown, selected among many other tested by 
the authors, illustrate that a successful hybrid between the 
evolutionary particle swarm algorithm and the differential 
evolution algorithm concept, deemed DEEPSO, leads to better 
performance in the optimization of problems with a fixed-cost 
mixed-integer objective function. These problems display 
generally a deceptive landscape which makes it difficult to 
discover the optimal solution in many cases. 

The advantage of having an adaptive recombination scheme 
associated to the PSO logic had already been demonstrated 
with EPSO. With the DEEPSO Pb-rnd formulation, one now 
suggests that the recombination scheme should be enlarged to 
the set of particle past bests. The soundness of this idea should 
be further confirmed in a diversity of sets of tests and cases. 
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