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Abstract – This paper presents some new ideas to improve the 
performance of EPSO (Evolutionary Particle Swarm 
Optimization). It discusses a Stochastic Star communication 
scheme and differential dEPSO. The paper presents results in a 
didactic Unit Commitment/Generator Scheduling Power System 
problem and results of a competition among algorithms in an 
intelligent agent platform for Energy Retail Market simulation 
where EPSO comes out as the winner algorithm. 
 

I.  INTRODUCTION 
HIS paper discusses some recent results obtained with a 
model that has been called EPSO – Evolutionary Particle 

Swarm Optimization. 
The interesting aspect of this model, from a conceptual 

point of view, is that it allows a double interpretation on how 
it works, because it may be seen from two perspectives: either 
as a variant of the PSO – Particle Swarm Optimization, or as a 
variant of Evolutionary Algorithms. This hopefully will help 
in understanding how the method works and how should one 
manipulate its characteristics to obtain better convergence 
characteristics in specific problems. 

The name EPSO, as far as the author is aware of, has been 
first coined in 2002, in [1]. Subsequently, a few papers more 
presented some interesting results and applications 
[2][3][4][5]. However, more recently (1995) some other 
publications have started to use the acronym EPSO for other 
type of algorithms, such as “extended PSO” [6],“enhanced 
PSO”[7] or even “emotional PSO”[8].  

It is unfortunate that this may lead to some confusion to 
readers and researchers. We wish to make clear from the start 
that by EPSO we refer to a class of algorithms of the family of  
self adaptive EA – Evolutionary Algorithms, where the 
classical operators for recombination are replaced by a rule 
similar to the particle movement of PSO; alternatively, we 
refer to a class of algorithms of the family of PSO where the 
weights associated to the components of the movement rule 
are made to evolve in a self-adaptive mechanism. 

II.  EVOLUTIONARY ALGORITHMS 
A general Evolutionary Algorithm has the following steps: 

Procedure EA 
initialize a random population P of μ elements 
REPEAT 

reproduction (introduce stochastic perturbations in the new 
population) – generate λ offspring… 

   …by recombination
   …by mutation
evaluation - calculate the fitness of the individuals 

selection - of μ survivors for the next generation, based on 
the fitness value 

test for termination criterion (based on fitness, on  number of 
generations, etc.) 

Until test is positive 
End EA 
The driving force of EA is the selection operator. However, 

it requires the action of the replication or reproduction 
operators – recombination and mutation – which generates 
new points in space to be evaluated. 

Mutation is an operator acting on a single individual, 
particle or chromosome. Recombination generates a new 
individual by combining features from a set of individuals in 
the population. The definition of the mutation operator may be 
dependent of the particular problem under analysis. In 
Evolution Strategy/Evolutionary Programming, where 
typically (not necessarily) an individual is composed of a 
string of real variable values, the classical mutation procedure 
adopts Gaussian or Lognormal random perturbations of each 
variable. The amplitude of mutation is governed by the 
variance of the distribution regulating mutations, and its 
square root (standard deviation) is often called learning rate.  

In self-adaptive Evolutionary Algorithms, the learning rates 
are transformed into variables and added to the chromosome 
[9][10]. During the process, they are themselves subject to 
mutation and selection and eventually they acquire values that 
allow a near optimal progression rate towards the optimum 
[11]. Self-adaptation has been used exclusively on the 
operator mutation. 

For the operator recombination many forms have been 
proposed. The most important are: 

Uniform crossover – in this variant, the value for each 
variable in the newly formed individual is obtained 
by randomly selecting one of the μ parents to 
“donate” its value. 

Intermediary recombination – in this variant, the value of 
any variable in the offspring receives a contribution 
from all parents. This could result either from 
averaging the values of all parents (global 
intermediary recombination) or from averaging the 
values from a subset of the parents only, randomly 
chosen (local intermediary recombination). In these 
processes, one may still chose to average values 
with equal weights or to randomly define weights 
for a weighted average. In the case of μ = 2, one 
could have the value of a variable given by 
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where the indices j1 and j2 denote the two parent 
individuals and uk is sampled from an uniform 
distribution in [0,1]. This leads to new individuals in 
the line segment between the two parents, but the 
concept may extend to points in the line but external 
to the segment if uk is allowed to be sampled in a 
larger interval. 

Point crossover – in this variant, parallel to the one 
adopted in genetic algorithms, first one randomly 
defines π crossover points, common to all 
individuals in the set of parents, and then the 
offspring successively receives a part from each 
parent, in turns. 

Some EA give relevance to the mutation operator while 
others relies mostly on the recombination operator. 

III.  THE MOVEMENT RULE OF PSO 
PSO – Particle Swarm Optimization [12] is not an 

Evolutionary method. In fact, it does not rely on a selection 
operator as its driving force. It depends on movement rule that 
allows the generation of new individuals in space and this rule 
is such that, by itself, pushes the search towards the optimum. 

Variants have been proposed but the basic movement rule, 
producing a new individual X for iteration (k+1) is based on 
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where the first term of the summation represents inertia or 
habit (the particle keeps moving in the direction it had 
previously moved), the second represents memory (the 
particle is attracted to the best – past – point in its trajectory) 
and the third represents cooperation or information exchange 
(the particle is attracted to the best point found by all 
particles). 

The parameters A, B, C are diagonal matrices with weights 
fixed in the beginning of the process (index m is for the 
memory weights and index c is for the cooperation weights). 
In a classical formulation, the parameter A is affected by a 
decreasing value with time (iterations), while the parameters B 
and C are multiplied by random numbers sampled from a 
uniform distribution in [0,1]. 

A more elaborate version of PSO adopts the so called 
constriction factor [13] but we will not discuss it further 
because it does not invalidate or contradict our conclusions. 

IV.  EPSO AS AN EVOLUTIONARY ALGORITHM 

A.  Recombination in EPSO 
In 1992 we have proposed an algorithm called EPSO [1] 

where instead of using the classical mutation and 
recombination operators to produce new individuals we have 
adopted the general scheme of the movement rule of PSO. 

If we examine this scheme, we conclude that a new particle 
is formed as a combination of four other points: )1k(

i
+X

o Its direct ancestor  )k(
iX

o The ancestor of its ancestor  )1k(
i
−X

o A (possibly) distant past best ancestor bi 
o The current global best of the swarm bG 
We can give a different aspect to the movement rule: 
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and we realize now that the sum of the parameters multiplying 
the four contributors to generate the offspring is equal to 1. Is 
is therefore tempting to identify this expression with an 
intermediary recombination in EA with μ = 4 and a special 
rule to determine who the parents are (they are not randomly 
selected). This means that we are considering an enlarged 
population including not only the active particles but also the 
direct ancestors and the set of the past best ancestors. 

It is a recombination rule that has the remarkable property 
of pushing the population towards the optimum, as the PSO 
algorithms have demonstrated. Therefore, if joined together 
with a selection mechanism, which also pushes the population 
towards the optimum, one may expect that some cumulative 
effect may improve the performance of an optimizing 
algorithm. 

B.  Self-adaptive recombination 
To determine the best values to use in A, B and C, EPSO 

relies on a self-adaptive mechanism. These parameters, 
considered as strategic, will be subject to selection and 
hopefully will evolve to values adapted to the type of 
landscape being searched. 

Given a population with a set of particles, the general 
scheme of EPSO is the following: 

o REPLICATION - each particle is replicated r times 
o MUTATION - each particle has its strategic parameters 

mutated 
o REPRODUCTION - each mutated particle generates an 

offspring through recombination, according to the 
particle movement rule, described below 

o EVALUATION - each offspring has its fitness evaluated 
o SELECTION - by stochastic tournament or other 

selection procedure, the best particles survive to form a 
new generation, composed of a selected descendant 
from every individual in the previous generation 

Mutation of a parameter w into w* is ruled by 
multiplicative Lognormal random numbers such as in 
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random numbers such as in . The learning 
parameter (τ or σ) must be fixed externally. 
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where   – best point found by particle i in its past life up to 
the current generation 

ib



 

Gb  – best overall point found by the swarm of particles 
in their past life up to the current generation 

)k(
iX  – location of particle i at generation k 
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−−= XXV – is the velocity of particle i at 
generation k  

wi1 – weight conditioning the inertia term  
wi2 – weight conditioning the memory term  
wi3 – weight conditioning the cooperation or 

information exchange term  
P − communication factor. 

The symbol * indicates that the parameter will undergo 
mutation. In the most effective EPSO variant, not only the 
weights affecting the components of movement are mutated 
but also  the global best  is randomly disturbed to give Gb
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where wi4 is the forth strategic parameter (target weight) 
associated with particle i. It controls the “size” of the 
neighborhood of where it is more likely to find the real 
global best solution. 

Gb

Selction is modeled from the Stochastic Tornament 
concept: among the ofspring of each particle, one compares 
the best one with another particle randomly sampled, and the 
best is selected with probability (1 – luck), where the luck 
parameter is defined in [0,1] but is usually small. If luck = 0 
we have elitist selection. 

C.  Communication topology 
The communication factor P induces a stochastic star 

topology for the communication among particles. It is a 
diagonal matrix affecting all dimensions of an individual, 
containing binary variables of value 1 with probability p and 
value 0 with probability (1-p); the p value controls the passage 
of information within the swarm and is 1 in classical 
formulations (this the star).  

This stochastic scheme oscillates between the star 
arrangement and a selfish version called cognitive model in 
[14], where no communication exists and a descendent of an 
individual is built only of contributions from its ancestor line. 

Experimental results have suggested that a communication 
probability of p = 0.20 leads in many cases to better results 
than a classical deterministic star model with p = 1. One is 
lead to believe that restraining the free flow of information 
about the global best allows more local search by each particle 
and avoids premature convergence. As it is easily observed, 
this is yet another way of acting on the recombination 
operator. 

D.  EPSO as a PSO 
Because EPSO adopts the movement rule of PSO, we can 

always look at how it works as a swarm whose movement is 
ruled by weights that self adapt in order to produce a global 
drift more adapted to the landscape. Furthermore, because 
these weights are subject to mutation, this may give an extra 
chance for the swarm to escape local minima (i.e., having 
particles that still explore other regions of space, because they 

may gain enough speed). 
On the other hand, EPSO also shows ability to focus and 

zoom in the optimum, precisely because mutations in the 
weights may favor the selection of the cooperation factor and 
reduce the importance of inertia and memory, if this strategy 
proves successful. This may in part explain why EPSO has 
shown, in many tests, robustness by consistently reaching the 
same optimum in a number of runs. 

V.  EXPERIMENTS WITH EPSO 

A.  Communication probability p  in the Rosenbrock function 
The effect of the communication probability p was 

observed in the Rosenbrock function, a very difficult one 
whose expression is  

∑
−

=
+−×+−=

1D

1d

2
1d

2
d

2
d )xx(100)x1()X(f ,    X∈[0 ; 30]D

Experiments in a space of D = 30, with a swarm of 20 
particles, additive mutation with σ = 0.1, r = 2 and a 
maximum effort of 200,000 fitness function evaluations, 
supplied this comparison: 

 p = 1 p = 0.2 
Average in 20 runs 55.253326 27.097839 
St. deviation 43.361223 1.4124137 
The improvement is remarkable. Notice from the std. 

deviation value that some results in the case of p=1 were very 
good but others were bad. The results for p = 0.2 display good 
robustness (narrow variance) placing the solution in every 
case in the neighborhood of the point with coordinates 
(0,…,0), where f(X) = 29. The optimum is at point (1,…,1) 
but the basin of attraction is extremely narrow and the path to 
reach it a deep valley. 

The same test but now using a multiplicative Lognormal 
mutation with τ = 0.1 gave 

 p = 1 p = 0.2 
Average in 20 runs 28.724101 26.114459 
St. deviation 0.104350 0.958282 
We see that multiplicative Lognormal mutations perform 

better than additive Gaussian mutations and that in this 
difficult problem restricting communication among particles 
releases the search from becoming too gripped to a given 
point earlier discovered. 

B.  The enhanced elitist version of EPSO 
The difficulty with problems such as the Rosenbrock 

function is that during the evolution of the swarm, selection 
acts only on the offspring and never on the set of parents plus 
offspring (en Evolution Strategies language, it is a comma 
strategy and not a plus strategy). To introduce a plus strategy 
and limited elitism, we have introduced changes in EPSO by 
dealing with the particle that finds the global best in a 
different way to the rest of the swarm: the particle at the 
global best is not eliminated unless one of its descendents 
finds a better point and replaces it – it competes with its 
offspring and pure elitism applies, not stochastic tournament. 



 

Furthermore, for this particle we generate not just r 
descendents but a set d > r – a local mini-swarm – and the 
mutations of the weights are done with a much narrower 
variance. 

Applying this elitist version to the Rosenbrock function, 
with the same data and r = 2 but d = 4 and τ = 0.005 just for 
the mini-swarm, we have obtained the following results: 

 p = 1 p = 0.2 
Average in 10 runs 26.226596 17.529253 
St. deviation 0.5763617 9.0554841 
This represents a noticeable improvement and indicates 

that exploring an elitist strategy is a way to improve the 
performance of EPSO in problems with narrow and difficult 
valleys such as is the case of the Rosenbrock function. 

C.  The differential evolution version of EPSO 
There is more than a vague similarity between PSO and DE 

- Differential Evolution [15], an evolutionary algorithm that 
uses a recombination rule that resembles some characteristics 
of the movement rule of PSO. In its variant DE2, from a 
particle X(k) at iteration k a new individual is produced 
through 
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where XA and XB are two different individuals sampled from 
the population and distinct from the current individual X and 
b

B

G is the global best. In this recombination operator, the 
attraction for the particle past best is replaced by the 
difference between to other individuals. 

The general principle of DE relies on the perception by the 
algorithm of the topology of the function being optimized by 
sensing macro-gradients through differences of points. In a 
way, this is exactly what a PSO algorithm also does. 

We decided to try to add this flavor to EPSO by changing 
the movement rule precisely in the memory element, in a 
version we will call dEPSO. Instead of using the difference 
between a particle and its past best, we will use in this term 
the difference between two particles A and B randomly 
selected among the population (this can be the enlarged 
population including the set of particles past bests). The 
movement rule of dEPSO becomes 
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The effectiveness of this model is tested in the following 
problem of unit commitment in power systems: given a set of 
generators and their generation cost curves, define which 
generators should be shut down and which should be in 
service and at which loading level, in order to minimize the 
overall cost (start up cost plus operation cost). 

The problem is complex because of the cost functions for 
generators that must be considered – a mixed-integer non-
linear program. Because of technical limits, the domain of a 
generator is not connected – there is a point (0,0) 
corresponding to generator shut down and then there is a gap 
until a point (Pmin, c(Pmin)) corresponding to the technical 
minimum of the machine. And the general shape of the cost 
functions implies that the problem has a non-convex nature – 

therefore, many local optima may appear. 
The comparative performance of dEPSO is tested in a 

particular problem. The data are: 
o the number of generators – ngen = 5 
o the parameters of the cost function of each generator – 

this function is assumed to be a cubic polynomial, with 
4 parameters ai for i=1 to 4: 

o  3
3

2
210 PaPaPaaC +++=

o where C is the generation cost in $/hour and P is the 
generator output in MW. 

o the technical minimum and maximum of each generator 
Pmin and PMax 

o the load, located at a single bus (transmission system 
neglected) – L = 15 MW 

Cost curves and technical limits given as: 
Generator a0 a1 a2 a3 Pmin Pmax

g1 1 0,5 0,1 0,03 0 or 1 10 
g2 2 0,4 0,2 0 0 or 2 10 
g3 4 0,3 0,3 0 0 or 7 10 
g4 6 1,5 0,15 0 0 or 2 10 
g5 0 4 0 0 0 or 1 10 

 
The objective is to minimize the sum of the costs for the 

five generators, noting that the domain of each variable is not 
continuous. The EPSO model demands an individual defined 
by its object parameters (5 variables) and strategic parameters 
(4 weights). We used Lognormal mutations with τ = 1, 20 
particles, r = 2 and 1000 generations. Initial values of the 
weights were set to 0.5 except for the target weight where the 
value was set to 0.001. 

The cost curves are depicted in Figure 1 as well as the 
optimal solution, which is 

g1 g2 g3 g4 g5 Cost 
3.414 4.586 7 0 0 33.9068 

Figure 2 displays the evolution of best fitness during an 
EPSO run and Figure 3 shows the weights of the global best 
particle kept at each iteration, for the same run. The best 
particle pattern shows that improvements were made till late 
in the process, in fact tiny adjustments after the big jump 
before generation 200, after which the perturbation in the 
target weight faded away. In the last generations, we also see 
that the inertia weight was dominant over the other weights. 
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Figure 1 – Cost curves for the unit commitment problem and the best solution 
with 3 generators dispatched and 2 shut down. 



 

Figure 4 shows the fitness evolution for a dEPSO 
algorithm and in Figure 5 shows the evolution of weights of a 
single specific particle in the optimization process. It suggests 
that the selection procedure indeed distinguished among the 
roles of the different components of the movement rule.  

These are success cases, but how do the EPSO and dEPSO 
versions compare? We examined how many times an 
algorithm discovers the optimum value or the optimum 
neighborhood, in 1000 generations, in 20 runs: 

 Av. 20 runs Best found No. times opt. 
EPSO 34,81575 33,90696 7/20 
dEPS
O 34,07073 33,90683 18/20 

This result suggests that the dEPSO variant deserves to be 
looked at seriously and new research is suggested. The fact is 
that the problem of Unit Commitment is one very important 
problem in Power Systems for the economical implications it 
has and efficient solutions are still being sought that may 
compete with classical dynamic programming or branch and 
bound approaches, that have the known  limitations of the 
curse of dimensionality for real systems. 
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Figure 2 – Evolution of the best fitness during 1000 generations in one run of 
the EPSO algorithm 
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Figure 3 – Evolution of weights of the best particle at each iteration during the 
unit commitment optimization (1000 generations) using EPSO. 
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Figure 4 – Evolution of the best fitness during 1000 generations in one run of 
the dEPSO algorithm 
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Figure 5 – Evolution of weights of a particle during the unit commitment 
optimization (1000 generations) using dEPSO. 

VI.  OPTIMIZING MARKET COMPETITION 
Comparisons of the performance of EPSO with other 

algorithms have been made in demanding Power System 
problems by other authors. In [16] the authors compared 
EPSO with PSO and their adaptive variant of called APSO in 
co-generation plant operation optimization, with the 
advantage of EPSO. In [17] one finds a comparison of several 
methods in voltage stability assessment where EPSO also 
emerged as the winner. 

In this section we will refer to a competition among 
algorithms that we organized in a very demanding problem, 
extremely suited for meta-heuristics, given that no analytic 
solution may be found. It is the case of a simulation of a retail 
market in energy distribution, where the general objective is to 
discover a market strategy that will give advantage to a market 
actor (energy retailer) in a competitive environment. 

The simulation was set over the open source intelligent 
agent platform JADE, which is FIPA compliant. 
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Figure 6 - Parallel arrangement of 19 Agents in a cluster of 

5 PCs 
 



 

 We will not describe this platform here but a description 
may be found in [18]. The simulation is composed of 19 
agents running in a parallel arrangement of 5 PCs, as shown in 
Figure 6. 

The agents represented in the platform were: 
 
1 Residential cons. group 1 Commercial cons. group 
1 Industrial cons. group 2 Electricity Retail Suppl. 
2 Gas Retail Suppliers 1 Heat Retail Supplier 
1 Power Delivery comp. 1 Gas Delivery company 
1 Heat Delivery company 1 Electricity Regulator 
1 Electr. Market operator 1 Gas Market operator 
1 Heat Market operator 1 Gas Regulator 
1 Heat Regulator 1 Economy agent 
1 Information Environm.  
 
Each agent has an internal logic that commands its 

decisions, which are influenced by load forecasts, network 
development, reaction of consumers, prices, investment 
decisions, regulatory constraints, etc. Agents are assumed 
independent and from their interaction a complex behavior 
emerges that determines a dynamic market equilibrium while 
the simulation develops along time.  

One special type of agent is the retailer, which is equipped 
with a mechanism to predict the behavior of competitors in 
price setting. But the most unique feature of this agent is that, 
during the simulation, it performs regularly internal 
simulations of the market in order to try to optimize its policy 
for the next moves, acting on variables such as price of energy 
or money allocated to advertising, increasing company 
efficiency or investment.  

This environment is dynamic because we have equipped 
the consumer agents with non-linear mechanisms that simulate 
their response to market conditions. Also, retailers depend on 
the action of delivery companies, because these agents make 
decisions about expanding their networks (having a GIS-type 
representation of the territory) and therefore potentially 
reaching new consumers. 

This is an extremely complex environment to test a number 
of alternative meta-heuristics to optimize market strategy in 
the internal simulation of a retailer and to examine which 
agent (equipped with which algorithm) comes out as a winner 
(best profits) in a simulation extending for 2 years on a daily 
basis. We have reported some results in [19][20] and in this 
paper we add comparisons including classical PSO, together 
with EPSO and 3 versions of Genetic Algorithms. 

The Genetic Algorithm versions were: 
SSGA – Steady State Genetic Algorithm: a scheme where 

for a generation to the following we allowed the replacement 
of only 80% of the population, keeping the best 20%. It adds 
elitism to the selection, aiming at preserving in the population 
the most promising individuals so that they may have more 
chances of combining their good genes with other individuals. 

DCGA – Genetic Algorithm with Deterministic Crowding: 
Deterministic Crowding is a selection technique where similar 
individuals in the population are paired before comparisons 

are made, and elitist selection acts on each pair formed. It 
aims at preserving diversity in the population. 

MPGA – Multi-Population Genetic Algorithm: a scheme 
where we used two sub-populations, each running a SSGA, 
but exchanging two randomly selected individuals from one of 
the sub-populations to another before crossover took place. It 
also aims at preserving diversity. 

The PSO algorithm used was the classical formulation with 
decreasing function in the inertia weight. The EPSO version 
was the basic one with Lognormal mutations. 

The simulation length was of 24 months for market 
simulation and of 2 months for retailer internal simulations 
inside the evolutionary process.  

The stopping criterion was the same for all algorithms: 
when performing the first internal simulation, the evolutionary 
process was stopped if there were no improvement in the 
fitness function after 50 consecutive generations; in all the 
following internal simulations, during the market simulation 
of 24 months, the limit was 10 generations.  

In order to compensate for the influence of random events, 
we run every simulation 5 times. During market simulation, 
only one retailer was equipped with one type of EA and other 
retailers were not optimizing; also the investment function of 
Delivery agents was disconnected to avoid introducing noise 
in the simulation and disturb the interpretation of results.  

The fitness function was the same in all cases: maximizing 
profit of the retailer. 

In a first test, we have fixed the population for all methods 
as 20 individuals.  

Figure 7 and Figure 8 show the weekly profits made by a 
retailer agent using PSO and EPSO in five runs. One may 
observe that EPSO displays robustness in the results. Figure 9 
compares the performance of the 5 algorithms and we see that 
EPSO was the clear winner and MPGA is second best while 
DCGA was the clear loser.  

However, one of the possible reasons of bad performance 
of some algorithms could be early termination because of the 
application of the stopping criterion. We see clearly in Figure 
10 that the distribution of computing effort was quite 
unbalanced. In an attempt to have a fair comparison, we have 
defined an Experiment 2 and changed the size of populations 
such that EPSO and MPGA were kept constant at 20 
individuals while the population size of DCGA, SSGA, and 
PSO was increased to 100, 80, and 40 respectively. 

Figure 11 shows the result as an average of five runs. 
Clearly, still EPSO is the winner and SSGA emerges now as 
the second best, while DCGA is confirmed as being the poor 
performer.  

Figure 12 allows us to see that the best run of SSGA 
outperformed all others but that on average the profits made 
by a retailer with EPSO are stable on all runs and better than 
achieved with any other algorithm. Figure 13 clearly shows 
that now the computing effort of all five algorithms is 
relatively balanced. 
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Figure 7 – Weekly profits made by a retailer equipped with PSO in 5 runs. 
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Figure 8 – Weekly profits made by a retailer equipped with EPSO in 5 runs. 
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Figure 9 – Average of five runs for all algorithms 
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Figure 10 – Number of evaluations in the best run and on average of 
simulations done by the competing algorithms. Some algorithms experienced 
early termination because they could not achieve progress in a number of 
iterations. 

 

4500

5000

5500

6000

6500

7000

1 11 21 31 41 51 61 71 81 91 101
Weeks

W
ee

kl
y 

Pr
of

it(
E

ur
o)

PGA EPSO
SSGA DCGA
PSO

 
Figure 11 – Average of five runs with different population sizes (Exp. 2) 
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Figure 12 – Accumulated profits by a retailer equipped with each algorithm, 
for the best run and on the average of five runs of 2 year simulations (Exp. 2). 
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Figure 13 – Number of evaluations in the best run and on average of 
simulations done by the competing algorithms with different population sizes 
(Exp. 2). 

VII.  CONCLUSIONS 
This paper presents new ideas for improving the 

Evolutionary Particle Swarm Optimization algorithm and 
displays new evidence of the robustness of the method (in 
achieving consistently the same good results). The two 
innovations are: a random parameter affecting communication 
among particles, creating a topology that we call stochastic 
star, which proved valuable in cases where the algorithm 
needs to escape premature convergence; and a variant inspired 
in differential evolution that we call dEPSO, which displayed 
interesting behavior in the mixed integer problem of unit 
commitment which is a rather difficult practical problem in 
Power Systems. 



 

The paper provides also new evidence of the interest of the 
EPSO approach by reporting some results of a competition 
among distinct meta-heuristics in an extremely complex and 
dynamic environment: a market simulation platform 
composed of intelligent agents. The meta-heuristics were used 
to optimize the market strategy of retailer agents and EPSO 
emerged as the algorithm that provided competitive advantage 
to the retailer using it to predict and select market decisions. 

These results provide new incentive to further research the 
potential of the algorithm. 
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