oJ INESC °
LABORATORIO ASSOCIADO

How to Compile Simple EPSO C++ code — version 2009

This document isn't dealing with fundamentals nor theory of evolutionary computation or EPSO.
To do so, one is instructed to read other available works related to EPSO algorithm. Instead, this is
just a practical "walkthrough" to setting up the compilation of EPSO in C++.

Hrvoje Keko hkeko@inescporto.pt

Introduction, requirements and specifics

There are three ingredients for a successful compilation of EPSO:
— EPSO code itself, of course
— STL-compliant C++ compiler
— Boost libraries

This EPSO implementation can be compiled on virtually any modern C++ compiler.

It relies on Standard Template Library, a ready made set of common classes, that is included in the
C++ standard.

http://en.wikipedia.org/wiki/Standard_Template_Library

A good introductory STL tutorial can be found here, on a very resourceful CodeProject community
website:
http://www.codeproject.com/KB/stl/stlintroduction.aspx

Even though this EPSO implementation was mostly developed by using Microsoft's excellent Visual
C++ 2005 development environment, it doesn't use any Microsoft platform specifics. Thus virtually
any newer C++ compiler could be used in compiling EPSO.

The only compiler requirements are related to STL and Boost libraries. This is why some older
compilers, like Microsoft's Visual C++ 6.0 from 1998, may have some difficulties. So it may be more
convenient to use a more recent compiler. Even more so since newer ones (like MS Visual C++ 2002
and newer) largely facilitate debugging of STL code.

In this document two examples of setting EPSO compilation are shown: setting up a project in
Microsoft Visual Studio 2008 and in Bloodshed DevC++.

mailto:hkeko@inescporto.pt
http://www.codeproject.com/KB/stl/stlintroduction.aspx
http://en.wikipedia.org/wiki/Standard_Template_Library

EPSO 2009 C++ files overview

cppepso.cpp exampleFit,.. fitnessfuncki,.. fitnessfuncti,., myfitness.cpp myfitness.h - particle.cpp

[I I

particle. b SIArTN, Cpp swarm.h

The EPSO 2009 consists of several C++ files. There are three base classes of EPSO, some examples
on how to write a fitness function, and a base program that instantiates and runs the EPSO.

— Ccppepso.cpp
this is the main program, that instantiates the swarm object and runs the basic
algorithm loop calling the methods of class swarm

— swarm.h and swarm.cpp
the swarm class controls the particle movements, communication between particles,
and basically encapsulates the whole EPSO algorithm

— particle.h and particle.cpp
these files define particle class: this class implements movement equation, mutation of
strategic parameters etc — all of these are controlled inside the swarm class — so the
swarm class is “responsible” for managing particles

— fitnessfunction.h and fitnessfunction.cpp
this class is the abstract class (i.e. it can not be instantiated) for the fitness function, it
has the virtual fitness function

— exampleFitness.h
this file contains several classic example functions — these are extensions of the abstract
fitness function class above that implement the Rosenbrock, Alpine, etc...

— myFitness.h and myFitness.cpp — the simplest example possible on how to develop a fitness

function suitable for EPSO.

The rationale is as follows — the swarm and particle classes can be used as-is, but the user has to
develop own fitness function that will extend and implement the calculation of fitness. To make it
as simple as possible, some examples are included in exampleFitness and in myFitness files, and
described later in this document.

Even though it may not be the most elegant solution, the EPSO algorithm only instantiates a single
instance of fitness function object and then in the swarm class passes around just a pointer to that
particular instance of fitness function object. This was chosen instead of instancing the fitness
function with each particle, since in real-life fitness functions can be "heavy".

In this 2009 version most of the functionality is encapsulated within the swarm class. Curious users
might find the insides of swarm and particle classes more interesting.

oJ INESC °
LABORATORIO ASSOCIADO

Boost libraries

One thing in particular is specific to this code. Besides using the STL libraries, it uses Random
library from an excellent set of Boost libraries (www.boost.org).

Boost is set of peer-reviewed, high quality C++ libraries that conveniently extend the functionality
of plain C++. Boost provides a broad set of applications, and heavily relies on C++ templates and
generic programming. It is also pretty extensively and meticulously tested.

It is well known that the performance of metaheuristic algorithms is affected by quality of a
random number generator being used. Thus this version of EPSO is “complicated” by using the
Boost's Random library.

Another benefit of the Boost Random library is availability of random number distributions like
Gaussian or log-normal. So using Boost Random means using a convenient usage of very good
random number generator coupled with a variety of distributions.

Although this is not entirely necessary for pure usage of EPSO, this is how Boost Random is used in
EPSO code.

A basic example of its usage is here :

http://en.wikipedia.org/wiki/Boost_C%2B
%2B_Libraries#Generating_random_numbers_.E2.80.93_Boost.Random

random number
genarator

random number
sampler

distribution &
boundaries

e

At first, one object of random number generator (RNG) class is instanced.

In the whole EPSO process, there is just a single instance of RNG being used. This is why a
reference to RNG is constantly being passed in the swarm class code.

This way one can control the EPSO process — by controlling the RNG. All of this is done inside the
swarm class — so the user that only creates a fitness function doesn't need to know a lot about
this.

Next, a desired distribution (Gaussian, uniform, log-normal...) is instanced. The distribution object
takes care that the random numbers fit into desired distribution and boundaries.

Finally, a sampler object is instanced. It couples the RNG with the distribution, and it is the sampler
that gets called for to get the random numbers.

http://en.wikipedia.org/wiki/Boost_C%2B%2B_Libraries#Generating_random_numbers_.E2.80.93_Boost.Random
http://en.wikipedia.org/wiki/Boost_C%2B%2B_Libraries#Generating_random_numbers_.E2.80.93_Boost.Random
http://www.boost.org/

INESCPORTO

Boost libraries along with their further documentation can be freely obtained from www.boost.org
Once the download is finished, extract them to a folder on your hard drive.
In this example, C:\Lib\Boost\boost_1_39_0 is used as Boost libraries location.

(550 N o0 B o o

9 Make anew Falder binvz boost doc lbs more pecple
) Publish this Folder to

hie Web - - -
=] tshzzihis Folder 1__J 1__) 1__J n___]

File and Folder Tasks

stage status taols wiki bijam.exe bjam.log
Other Places

rree Fie I — -
5 o - B B
hrvaje bonst.css boost.png boost-build... boststrap.bat bootstrap.sh CMakelists. bt

I shared Documertts

3 :ﬂr::\letwork Flaces @ @ E

index.htm index.html INSTALL Jamroot LICEMSE_L... project-conf,.,

README. Ext rst.css

Details

boost_1_39_0

File Folder
Date Modified: utarak, 7.

¥

26 objects 300 KB ﬂ My Camputer

http://www.boost.org/

Mp— ~®
INESCPORT
LABORATORIO ASSOCIADO

Compiling EPSO using Microsoft Visual C++ 2008

Several versions of Microsoft Visual Studio are available through University of Porto MSDN
Academic Alliance program. More details are on the website of University of Porto (www.up.pt)
While the following example shows screen captures from Visual Studio 2008, there's no significant
difference in setting up EPSO in other versions of Visual Studio.

Start the Visual C++ environment, and then choose to create a new project (File / New Project). For
now, choose the simplest, console application, and be sure to create an empty project, without any
automatically generated code.

Project types: Templates: MET Framework 3.5 [v] EE

Office [’\] visual Studio installed templates
Database
Reporting _ﬂWiHSZ Console Application EWiI‘ISZ Froject
Test
WCF My Templates
Warkflow
Wisual C# .
(=) Wisual C++
ATL
CLR
General
MFC
Smart Device
Test
Win3z
[l (ither Broisct Twnes]

i&]Search Online Templates...

[
A project For creating a Win32 console application

Mame: EPSO_2009_kutorial

Location: E:|INESCIERSO, [v]

[l create directary For solution

Win32 Rpplication Wizard - EPS0L 2009 tutorial P x|

Overview Application bype: Add common header Files For:
() Windows application

Application Settings

Application Settings
(%) Console application

QoL
() Static ibrary

Additional options:
Empty project:

This option creates a .wcproj file based on the project name
wou specified buk adds no files ko it. Use this when you
intend ko supply all your own source files,

http://www.up.pt/

INESCPORTO

Now, add the EPSO code to the project, by using Add existing items in Solution Explorer, usually on
right hand side of Visual Studio.

S Solution Explorer - Solution 'EF3C_Z0..,

R
Lo Solution 'EFSO_2009_tutorial (1 project)
= (54 EPSO_2009_tutorial

.. C

L CER Open Command Prompl
-'I - s Copy Path
i Mew Ttem, .. |. #dd 3
] Edstinglem... | $ cut
[Mew Filter 53 | Copy
*':g Class...
“2 Resource... X Remove
Rename
% Properties

After the EPSO code is added to the C++ project, the solution explorer would look somewhat like
this:

®
LABORATORIO ASSOCIADO

_: Solution 'EPSO_2009_kutorial' {1 project)
- 54 EPSD_2009_tutorial
= | Header Files
] exampleFitness.h
1] Fitnessfunction, b
] particle.h
] swarmn.h
[Resource Files
= | Source Files
¢+ cppepso.cpp
¢+ fitnessFunction.cpp

CH] particle. cpp
CH] swarm.cpp

._-tf'c|Su:|Iuti... & V4 View '.‘1‘.5'3-1-'#. .., 'Q";CIass...

The EPSO project properties now have to be changed so that the compiler knows where to find the
Boost libraries. In Solution Explorer, right-click the project name — the project name is
EPSO_2009 _tutorial in the screenshots. Then select Properties.

In Configuration Properties / C++ / General — just like in the following screenshot, add the Boost
directory to "Additional Include Directories". By the way, make sure you select "All Configurations"
in the property pages, so that you add Boost directory both to Debug and Release compilation
settings.

{ P50 2009 Totorial Property Pages m
Configuration: | &l Configurations || Platfarm; | Active(Win32) Rd
£ Common Propetties Additional Include Directories ChLibboost boost_1_39 0 [Z]
=I- Configuration Properties Resalve #using References
General Debug Information Format
Debugging Suppress Startup Banner ‘fes (fnologo)
= CiCH ‘Warning Level Level 3 (/W3)
GE”_E’_E') Detect 64-hit Portability Tssues No
Optimization Treat Wwarnings As Errors Mo
Preprocessar . Use UNICODE Response Files Yes
Code Generation
Language
Precompiled Headers
Cutput Files
Browse Information
Advanced
Command Ling
/- Linker
/- Manifest Tool
F- WML Document Generator
/- Browse Infarmation
/- Build Events
- Custom Build Step
Additional Include Directories
Specifies one or more directories to add to the include path; use semi-calon delimited list if more than one.
(fT{path])
L [o]4 J [Cancel] [Apply]

Confirm the change, start the compilation, and EPSO code should now compile without problems.
By default, as can be seen from the cppepso.cpp code, the EPSO runs Rosenbrock function
optimization.

Now, it's your turn to develop your own fitness function or test the fitness functions bundled with
EPSO 2009.

A T A®
LABORATORIO ASSOCIADO

Compiling EPSO using DevC++

Bloodshed DevC++ is a small but versatile, freely available development environment, used widely
by collaborators in INESC Porto. It can be downloaded from
http://www.bloodshed.net/devcpp.html

Just like in case of using Microsoft's compiler, the DevC++ compiler also needs to use Boost
libraries. To do so, there are two options — download the Boost library from www.boost.org
website and

Option 1: Adding manually downloaded Boost library directory to project options

Create a new, empty project and add EPSO files to it.

New project w
| Basic |
© o= i [J
‘wWindows Consale Static Library DLL Empty Praject

Application Application

Diescription
An empty project

Froject options:
M ame: L Project # Cx+ Project

cppepsn_devepp| Make Default Language

" Ok | X Cancel | ? Help

Choose Project / Project Options and then select Directories.

| Directories |

| Include Directaries |

C:ALib\boosthboost_1_36_0

Delete Invalid

’Qk | ¥ Cancel | ? Hep |

The directory where you have extracted the Boost library should be added to Include directories,
so the compiler can find it. You should now be able to compile EPSO.

http://www.boost.org/
http://www.bloodshed.net/devcpp.html

Mp— ~®
INESCPORT
LABORATORIO ASSOCIADO

Besides downloading the libraries from www.boost.org and manually adding them to your EPSO
project, DevC++ offers a WebUpdate tool where you can download and install the Boost “package”.

Option 2: Downloading Boost libraries from DevC++ package automatically

Go to Tools / Check for Updates/Packages, choose devpaks.org Community Devpaks, then C++
Libraries, select Boost and proceed with downloading.

™ WebUpdaie syl o}

Welcome to the Dev-C++ WebUpdate module

Select devpak server.

‘devpaks.olg Community Devpaks

Groups: Selectior: 1 files total, 7986 KB [8.178.106 Bytes)

‘ C++ Libraries ~ Status: Dizconnected

Avwailable updates list:

Update | Wersion | Installed | File size ‘ Date ”6
[Stack class oot 4KE 20080505 184354

[Fox Toolkit 1218 5IEKE 200411190512

[Fox Toolkit 1410 13M2KE 2005032201341 | =
[Fox Todkit 1410 9204KE 20050322 013453

O ibadbcr+ 023 IBEKB 200410-31 2214

= |Boost | 1.31.0 FIREKE 20041007 11:20

M ras Hat ramdam contsinar 1Ra 11 KR 2NNA.NSAR AT RN [V]

File description:
Boost is set of useful c++ libranies. This DexPak provides developers with an optimized build of boost version
1.31.0, the boost zource code, documentation, and project files for use in Dewv-C++

b Dowrload selected 9 Close

Now create a project and add EPSO files to it. You should be able to compile and run EPSO.

LABORATORIO ASSOCIADO

oJ) INESCPORTO’

Developing Your Own Fitness Function

To develop your own fitness function, you need to develop a class that public inherits the abstract
fitnessfunction class, and implements the calcFitness function, that takes a STL vector of doubles
as a parameter. As an example, myfitness.h and myfitness.cpp are also included in the EPSO 2009
code.

Starting with EPSO 2009 tutorial, one can add the myFitness class to the code.

[B EPSOT 2009 tutoral = Micrasoft Visual'Studio == W

File Edt View VAssisty Project Buld Debug Tools Test Window Hsip

A-E-Eda % G - b Release - Win3z - | [# experience
PERuPdelE, Bhbhae/EE=20 S50
(| myfitness.h | myfitness.cpp | eppepsa.cpp | Start Page |
g‘f D myfitness.h |w[8] @ erMEsCIEPSONERSO_2009_futoriafmyfitness.h
2 oA Solution 'EPSO_2009_tutarial (1 project)
Globsl 5 v || = =003
g (Global Scope) U U = |Z3 EPSO_2009_tutorial
El El #pragua once Mol =+ [Header Files
4 #include "fitnessfunction.h” i 1] exampleFitness.h
%4] FitnessFunction.h
g‘ using namespace std:] particle.h
g - 1] swarm.h
= = [My Fitness Files

J class myFitnessFunction : public fitnessfunction
1
public:

& myfitness.cpp
[n] myfitness.h
3 Resource Files
= [Source Files

€4 cppepso.cpp

€+ fitnessfunction.cpp
¢+ particle.cpp

& swarm.cpp

wyFitnessFunction():

//the most important member function is the following
double calcFitness(vector<doubles> X): // takes the vector and returns the walue of fitness function

|cg5oluti.... (@ VA View [@LVA T TE Class

@ HowDo1 Search |3 Index B

([} Help

Pragma Directives and the Pragms Keyward

Customizing the Development Environment
How bo: Customize Dynamic Help

“isual Studio Samples

YT ‘what's Mew in Visual Studio 2008

E— Wisual Skudin

Introducing Visual Studio

3

¥

2]

4
=
b

S
4
|

Shiow output from: Build

T — [a|| i Stuco Wakthrouchs
1>Generating code Smart Device Development
1»Finished genersting code I[) Getting Started
1>Enbedding manifest. .. Deciding ‘Which Technologies and Tools To Use
1»Build log was saved at “file://fe:\INESCV\EPSOVEPSO_2003_tutorialiReleaseiBuildLog.htn® =
1>EPS0_2003_tutorial - 0 erroris), O warningis)
Puild: 1 , 0 failed, 0 up-to-dats, 0 skipped =s=========]
%] m | [}
i Undo Clos= | 3 Errar List‘:fl Qutput ‘;{_\,Fmd Symbol ResUlts EepProperties |EDvnarmc Help
Ready Lni Col 1 chi NS

A simple sum of the vector X is the new fitness function implemented as calcFitness member of
myFitnessFunction class:

J#include ".Zmyfitness.h" I
SmyFitnessFunction: imyFitnessFunctioni) :fitnessfunction|) [
{
/¢ constructor
H
SJdouble myFitnessFunction: icalcFitness (vector<double> X [
{

unsigned int diwm = E.size():; // dimension of search space
double £it=0.0;
unsigned int i:
for (i=0; i<dim; 1i4+]
i
fic=fic+H[4i]:
i

return f£it;

®
LABORATORIO ASSOCIADO

Now one only needs to instantiate the myFitnessFunction object instead of Rosenbrock object in
the cppepso.cpp code. The problem parameters can be changed in the same file if one wants to do

SO.

To use the newly written

myFitnessFunction, this

ff setup the general problein parameters
numParticles=20;

waxIter=500;

dim = 2

minimize=true;

Fosenbroc kit

needs to be changed to...

Of course, the cppepso.

f¢ zetup the general problem parameters
numParticles=20;

maxIter=500;

dim = 2:

minimize=true;

myFitnessFunction myFL:

cpp also needs to “#include” the myfitness.h file.

That's it, you now have your own fitness function.

In a similar way, you can use other pre-defined fitness functions from exampleFitness.h file (Alpine,

Sphere...)

LABORATORIO ASSOCIADO

A note on swarm class constructor

Note that you can set the dimensions of search space, not only in this way:
/4 setup search space limits
wvector <double> minPos, maxPos:

The search space limits can also be set as a plain double values, not vectors of doubles:

double minFos=0;
double maxFPos=100;

Ff now declare the swarm
swarm epsolwarm [(nunParticles, minPos, maxPos, dim, wminimize, myFL):

The swarm constructor is overloaded:
— if the swarm constructor is called with a vector of doubles, that means the search space
limits are different for each dimension
— on the contrary, if you call the swarm constructor with doubles in place of minPos and
maxPos, this means all the dimensions of search space are limited in the same manner, i.e
the search hyperspace is [minPos, maxPos]*dim

From here, you can continue developing your own EPSO-based application.

Hrvoje Keko
Porto, July 2009
hkeko@inescporto.pt

mailto:hkeko@inescporto.pt

	How to Compile Simple EPSO C++ code – version 2009
	Introduction, requirements and specifics
	Boost libraries
	Compiling EPSO using Microsoft Visual C++ 2008
	Compiling EPSO using DevC++
	Developing Your Own Fitness Function

