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Abstract – Evolutionary Particle Swarm Optimization (EPSO) 
is a robust optimization algorithm belonging to evolutionary 
methods. EPSO borrows the movement rules from Particle 
Swarm Optimization (PSO) and uses it as a recombination 
operator that evolves under selection. This paper presents a 
reactive power planning approach taking advantage of EPSO 
robustness, in a model that considers simultaneously multiple 
contingencies and multiple load levels. Results for selected 
problems are summarized including a trade-off analysis of 
results. 
 

Index Terms – reactive power planning, evolutionary 
algorithms, particle swarm optimization. 

I.  INTRODUCTION 
EACTIVE power planning (RPP) belongs to the most 
complex problems of power system optimization. It can 

be defined as determining the amount and location of reactive 
power compensation devices to be purchased within a 
planning period. While trying to keep investment costs as low 
as possible over the planning period, the voltage profile should 
be adequate and also energy losses in the network should be 
minimized. These criteria are opposed so the optimal solution 
becomes a tradeoff between these criteria. While the reactive 
power control problem gives the optimal set of control 
variables [1], reactive power planning results also include the 
most appropriate locations to install the reactive power 
compensation devices and their types and sizes.  

Since the load levels in an electric power system vary 
significantly, the control variables need also to be determined 
within the reactive power planning process. This way the 
voltage profile can be kept within adequate limits and voltage 
collapse avoided. Besides the amount of reactive power 
compensated by newly installed devices, the control variables 
for RPP include setting transformer taps and voltage on 
voltage-regulated buses.  These control variables need to be 
included in the reactive power planning problem formulation. 

Reactive power planning is a nonlinear optimization 
problem with many uncertainties. Conventional calculus-
based optimization algorithms have been applied to this 
problem; however, many conventional optimization 
techniques are prone to delivering local minima solutions. 
Having this in mind, a number of techniques relying on 
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artificial intelligence have been applied to this problem. In 
particular, evolutionary algorithms offered new tools for its 
optimization [2], [3]. In general, the need for tuning the 
algorithm parameters by users with expertise in power system 
is preferably avoided, so in real life applications adaptive 
methods capable of self-tuning are sought. 

The Evolutionary Particle Swarm Optimization algorithm 
(EPSO) [4] is an algorithm with heritage from both 
evolutionary algorithms and particle swarm algorithms. It can 
either be viewed either as PSO with evolving weights or as an 
evolutionary algorithm with a movement rule borrowed from 
PSO. EPSO has already proven to be efficient, accurate and 
robust, therefore applicable to power system problems 
[5][6][7][8]. This paper shows how we were able to build an 
application that proposes decisions on the installation of 
capacitor banks, FACTS devices or other means of reactive 
compensation, taking in account not only a basic system 
scenario but also selected contingency scenarios associated 
with given probabilities. This multiple scenario approach is in 
general hard in computational terms but we were successful by 
taking advantage of EPSO robustness of convergence.  

II.  HERITAGE AND OUTLINE OF EPSO ALGORITHM 
Despite observed advantages over classic techniques, 

evolutionary algorithms also fail sometimes in fine-tuning of 
final solutions. This is the reason for development of hybrid 
methods – methods that take advantage of the excellent search 
capabilities of evolutionary algorithm and the advantages of 
classic methods in exploring the search space in the proximity 
of a solution found by an evolutionary algorithm [9]. 

Besides “classic” evolutionary methods, researchers have 
been further inspired in nature’s mechanisms. One example is 
Particle Swarm Optimization (PSO), inspired in the collective 
movement of flocks of birds, schools of fish or swarms of 
bees. PSO was presented in 1995 by James Kennedy and 
Russell Eberhart in [10]. It was discovered through simulation 
of a simplified social model. The originality of this algorithm 
relies on interchanging of information about the location of 
currently found best position, while particle movement is 
modeled with simple movement equation.  

EPSO – Evolutionary Particle Swarm Optimization 
algorithms, is a method with heritage from both evolutionary 
algorithms and particle swarm optimization. It borrows the 
movement rules from PSO methods and uses them as a 
recombination operator that evolves under pressure of 
selection. In an EPSO algorithm, given a particle (a point in 
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search space) in generation k, particle in the following 
generation k+1 is reproduced from that particle using the 
following movement rules. 

( 1) ( ) ( 1)k k k
i i i

+ += +x x v   (1) 
( 1) * ( ) * ( ) * * ( )

1 2 3( ) ( )k k k k
i i i i i i i g iw w w+ = + − + −v v b x P b x  (2) 

where the values are 
ib   – best point found by i-th particle itself, in its past life, 

up to the current generation 
gb  – best point found by the swarm of particles in their 

past life 
( )k
ix  – location of particle i in vector space, generation k 
( ) ( ) ( 1)k k k
i i i

−= −v x x – velocity of particle i at generation k  
wi1 – weight conditioning the inertia term (the particle 

tends to maintain previous movement) 
wi2 – weight conditioning the memory term (the particle is 

attracted to its previous best position) 
wi3 – weight conditioning the cooperation or information 

exchange term (the particle is attracted to the overall best-so-
far found by whole swarm). 

P − communication factor – a diagonal matrix containing 
value 1 with probability p and value 0 with probability (1-p); 
the value of communication probability p controls the passing 
of information within the swarm and ensures that the 
interchange of information between particles is stochastic, i.e. 
the information (about the best position found) is not always 
propagated. 

In each algorithm step, each particle is replicated a certain 
number of times. Afterwards, each replica of the particle has 
its strategic parameters (weights) mutated. All replicas and an 
original particle generate offspring particles through 
recombination, according to the particle movement rule 
described above. The evaluation (calculation of fitness) of 
each offspring is followed by a selection procedure that 
ensures the best offspring particles form a new generation.  

By mutation and selection the particles learn the values of 
their strategic parameters. In comparison with other adaptive 
evolutionary methods, EPSO is specific in its adaptive 
recombination operator while usually the adaptive operator in 
other methods is the mutation operator. In comparison with 
classic PSO, EPSO doesn’t use an explicit random factor in 
the movement equation: instead it relies on evolving weights. 
In real life applications, perhaps the most significant positive 
characteristic of EPSO is the robustness of convergence. This 
paper presents the application of EPSO in a flexible planning 
tool suitable for usage in real applications. The planning 
application presented in this paper is capable of handling real 
planning problems by taking into account physical network 
constraints over arbitrary number of time spans.  

III.  REACTIVE POWER PLANNING PROBLEM DEFINITION 
Reactive power planning is a non-smooth, non-

differentiable minimization problem for an objective function 
that includes operating costs with the purpose of reducing real 
power losses and improving the voltage profile as well as the 
allocation cost of additional reactive power sources.  

Similar to evolutionary algorithms, EPSO algorithm relies 
on a fitness function concept. A fitness function :f →x \  
gives a real-valued assessment of a vector x (a position in the 
search space). The fitness function is solely responsible for 
modeling the particular problem being optimized, and for the 
RPP problem it is built from three different functions: 
capacitor investment cost, cost of energy losses and 
penalization function for violating voltage limits. It also 
includes penalties associated to the violation of constraints.  

There are two factors that may distinguish network 
scenarios: load levels and structural changes. Load levels are 
associated with given load profiles and a single structural 
scenario may encompass several load levels or load scenarios. 
Each load level is associated with some probability extracted 
from an annual load curve, usually considering its duration. 

Structural scenarios are distinct from one another in the fact 
that they correspond to a diversity of contingencies (doesn’t 
matter of which order), each contingency associated with a 
given probability or unavailability. Usually one considers a 
base case with a high probability value and then contingency 
scenarios. Therefore, each scenario to consider in the RPP 
model will correspond to a combination of load and structural 
scenarios and its probability will be the product of partial 
scenario probabilities. 

The problem is then formulated as:  
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where 
s = index of network scenarios 
Prs = probability of scenario s 
CC = capacitor investment function 
EC = energy cost function 
VL = voltage limit penalty function 
and  

( , ) 0f X V = - equality constraints of power flow problem 
Qci = reactive power source installation at node i 
Nc = set of candidate nodes for reactive power installation 
Qgi = reactive power generation at node i 
Ng = set of generator nodes 
Ti = transformer tap setting – the transformer winding 

connected to bus i 
Ng = set of nodes with transformer windings with tap 

changers 
Vi = voltage magnitude at bus i 
NB = set of buses 
The conditions stated above must hold for each observed 

load level. Investment costs for each reactive power injection 
device consist of installation cost and purchase cost: 
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where sfC represents a scaling factor for the investment 
function, CN  represents candidate buses, AN  the set of nodes 
where devices may be installed - subset of the set of candidate 
nodes. ,Ci k  and ,C p k  represent the cost of installation and 
purchase of devices for the k-th candidate bus.  

The algorithm is capable of handling installation and 
purchase costs of a variety of devices such as capacitor banks 
or FACTS (for instance, static VAR compensators) and taking 
in account variations related to specific installation conditions. 
Existing devices just get zero cost and may be reinforced or 
ignored at planner’s discretion. 

Optimal device sizes are varying with load levels and these 
can vary significantly, so for instance more expensive 
switched capacitor banks can be used to vary the amount of 
reactive power produced. The algorithm handles purchase 
costs for each bank by breaking it down in two components: 

,C p i i i i iNFC CF NSC CS= ⋅ + ⋅  (5) 
where, for node i, NFCi represents quantity of fixed capacitor 
banks, CFi per-unit cost of fixed capacitors, NSCi quantity of 
fixed capacitor banks, and finally CSi per-unit cost of switched 
capacitors. 

The second part of the fitness function takes into account 
the total power losses in the system, used as the main factor 
for the energy loss function. For each load level and structural 
scenario observed, system losses are calculated from power 
flow results and load level duration. The formulation is 

1
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where sfE represents scale factor for energy cost function, NL 
number of load levels, PLj power loss at load level j, Tj 
planning time duration of load level j, and MCj marginal cost 
of energy for load level j. The costs are specified for each load 
level since energy prices usually have high volatility and 
significantly vary between peak and off-peak periods. 

Total voltage level penalty is a linear combination of 
factors proportional with linear and squared voltage deviation. 
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where sfV is a scale factor for the voltage limit penalty 
function, and sfM represents a scale factor for the linear penalty 
function. 

For each node and load level, voltage penalization is 
2
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This way undervoltages and overvoltages are kept in 

control. Penalties act as soft constraints and influence particle 
movement in the search space like a repulsive physical force. 

The scaling of penalties modifies the intensity of the push that 
forces the particles to leave the search space regions where the 
network has unacceptable voltage conditions. By configuring 
the scaling factor for voltage penalization, it is also possible to 
take legislative implications into account – legislation might 
deliver financial penalties to companies violating the voltage 
limits. Increasing the penalty scaling factor ensures that the 
algorithm strongly prefers solutions with acceptable voltage 
levels, so the particles are even more vigorously kept in the 
regions with acceptable voltages. 

IV.  EPSO SEARCH SPACE FOR RPP 
The application has the following input: a complete 

network configuration (i.e. nodes and branches of network 
configurations, for the base case and for contingency cases), 
the subset of nodes defined as candidate nodes for the 
installation of devices along with installation limits, sets 
defining ranges for available transformer tap changers, and 
finally node voltage limits for all nodes with voltage 
regulation. These variables are encoded in a search vector 
space as follows: the first Nc variables represent the reactive 
power injection in a particular node, ranging from 

min
ciQ to max

ciQ , NT variables represent settings of transformer 

taps, ranging from min
iT to max

iT  and finally NVR variables 
represent NVR settings for voltage-regulated nodes, ranging 
from minimum to maximum voltages for each node. 
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The number of space dimensions is Nc + NT + NVR. These 
variables are repeated Ns times in order to represent the 
situation for each load level at each structural configuration 
scenario. This means that the algorithm searches for optimal 
solutions for each period “separately”: the reactive power 
device sizes in different load levels are independent and not 
correlated until the solution evaluation.  

An outline of the fitness function that evaluates the 
mentioned vector follows. In the first place, new reactive 
injection devices are inserted into network topology. 
Afterwards, the second phase sets the transformer taps and 
voltage levels for voltage-regulated nodes. A Newton-
Raphson power flow calculation is performed and energy 
losses and node voltages become available. The process is 
repeated for each scenario. Finally, new device sizes are 
determined: if the adequate size is the same for all periods, 
then a fixed device (such as a capacitor bank) should be 
purchased. Otherwise, if the size varies over periods, some 
fixed size device should be purchased for the minimum 
determined reactive power needed, accompanied with 
switched or varying injection devices for the remainder. 
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Figure 1. Outline of reactive power planning fitness function 
 
The EPSO algorithm, described in Section II, has been 

implemented in INESC Porto on a Java agent-based platform 
capable of parallel processing. There are also two single-
processor implementations, in Java and C++. The results 
presented in this paper used the C++ based EPSO 
implementation. This implementation takes advantage of C-
based calculation library capable of quick processing of large 
network topologies and calculation of power flows. The 
topology processor library is developed in-house in INESC 
Porto, and is responsible for Newton-Raphson power flow 
calculations and maintaining the network configurations in 
memory. This library also takes care of operational constraints 
of all network elements.  

When modeling a sequence of load levels for a given 
configuration, one must assure that no unnecessary capacity is 
added and that a maximum of fixed capacity is in fact used 
(because it is in general cheaper). However, if an algorithm 
gets stuck in some local optimum it might yield unnecessary 
reactive power injections and implicate purchasing of 
switched devices. Such a case has been observed in [11]. A 
robustness test for the algorithm is therefore to run it with 
several scenarios, forcing the multiplication of variables, but 
leaving the network configurations and load level unchanged. 
The results should propose only fixed-type reactive injection 
devices. EPSO has successfully passed this test which 
confirms the validity of previous assumption. This test along 
with other tests is presented in the following chapter. 

V.  TEST CASES 
In this Section we show results from the application of the 

tool to the IEEE 24-bus and IEEE 30-bus test systems. We 
chose the IEEE 24-bus transmission network (known as the 
RTS – Reliability Test System) since it allows the inclusion of 
all types of control variables that the algorithm 
implementation can handle. This possibility is seen as 

particularly useful in the context of MV networks with 
distributed generation, where one finds not only a multitude of 
potential locations for reactive power injection (namely at 
distributed generation buses) but also the electrical 
characteristics of meshed networks. 

In all tests, we have used swarms with 30 individuals (or 
particles) and communication probability of 0.2. The stopping 
criterion adopted was to halt iterations after 2000 generations. 

For the purpose of building stressing tests, we have 
significantly increased the usual load and generation specified 
for the IEEE 24-bus network initial configuration (Figure 2). 

In total, 8 candidate nodes for installation of capacitor 
banks were defined: 4 nodes on 138 kV and 4 nodes on 230 
kV voltage level. The initial configuration did not include any 
capacitor banks. All the nodes with synchronous generators 
were defined as PV nodes with voltage regulation ranging 
from 0.97 to 1.1 p.u. Investment and installation costs were set 
at 27000 cost units for one fixed unit of 3 MVAr and 45000 
per one 3 MVAr unit of switched banks. Finally, voltage 
deviations higher than 9% were penalized. 

We run 2 tests with IEEE 24-bus system: 
oTest 1 - two scenarios with equal load levels and equal 

duration (4380 hours) 
oTest 2 – two scenarios with a structural base case and a 

contingency case (line 16 out) and both with the 
same load. 
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Figure 2. IEEE 24 bus test network 
 

TABLE I – IEEE-24 WITH EQUAL LOAD SCENARIOS – RESULTS FOR TEST 1 
 

 initial final 
Pg [MW] 5244.5 5231.4  
Pload [MW] 5130.6 5130.6 
Plosses [MW]   113.9  100.8  
max ,i j iNV V−  +6.2% +9.3% 
 
One should expect from Test 1 a generalized adoption of 
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fixed capacity devices and it did happen. Table I presents 
some results from this exercise. The total installed power of 
reactive power injection was of Qi = 441 MVAr, all in fixed 
capacitor banks. We may observe that, given the penalty 
scaling factors used, the algorithm gave preference to reducing 
losses at the expense of higher deviations from the nominal 
voltage values (in general, overvoltages). 

Test 2 was used for testing the algorithm’s capability of 
handling various network topologies simultaneously, within a 
single optimization process. The planner is therefore able to 
check how the installation of new reactive power injection 
devices is influenced by security constraints in the form of 
lists of contingencies (leading to distinct network topologies) 
and their probabilities of occurrence. With all other settings 
left unchanged, one transmission line was removed from 
network topology for the second scenario. 

 
TABLE II – IEEE-24 WITH A CONTINGENCY SCENARIO – RESULTS FOR TEST 2 

 
 initial final 
scenario base 

case  
contingency base 

case 
contingency 

Plosses MW 113.9 137.5 100.8 120.6 
max 

,i j iNV V−  6.2% -5.99% 9.3% 9.8% 

 
In this case, the algorithm chose switched capacitor banks 

in order to avoid overvoltages for both base and contingency 
planning periods while covering the energy losses. The total 
amount of installed banks is consistent with the previous test – 
441 MVAr in fixed capacitor banks and additional 62 MVAr 
in switched ones. Of course, the values are conditioned by the 
settings of scaling factors and costs. We selected these results 
to illustrate the trade-off between voltage control and loss 
reduction. 

 
 

 
 

Figure 3. IEEE 30 bus test network 
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Figure 4. Algorithm convergence in the IEEE 30 bus test case: voltage 
deviations higher than 3% are penalized along iterations (axis x) 

 
 
We run a Test 3 with the IEEE 30-bus network (see Figure 

3) where all the PQ nodes were selected as candidate nodes. 
This test was composed of three runs specifying different 
levels for the voltage penalty factors, in order to show again 
the trade-off between voltages and losses. 

To illustrate the evolution of the search, we present Figure 
4, where the three components of the objective function are 
present: investment, cost of losses and voltage penalty. The 
significant curve is the latter, because the scaling factors hide 
the evolution of the former cost components in the figure. The 
curves are established for the best current solution at every 
iteration. 

The convergence graph of the voltage penalty component 
reveals that the algorithm is searching in regions resulting in 
high voltage costs, and moves with iterations into regions 
where the solutions are less and less penalized, although in an 
oscillating manner. Eventually, this cost component becomes 
erased and the voltages at all nodes fall in the admissible band 
– see Table III. 

 
 

TABLE III – IEEE-30 NETWORK - RESULTS 
 

penalty initial >3% >5% >8% 
Pg [MW] 161.72 160.85 160.76 160.63 

Plosses [MW] 3.25 2.35 2.26 2.13 

,max i j iNV V− ,% -4.35 +3.00 +4.91 +7.7% 

iQ∑ [MVAr] - 58.1 56.2 50.8 
 
 
These results allow one to identify a Pareto surface where 

decisions depend on accepted trade-offs. For instance Figure 5 
shows the conflict detected between voltage regulation and 
power losses.  
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 Figure 5. Admissible voltage band vs. power losses in the IEEE 30-bus 
system: a Pareto optimum front – both criteria should be minimized but there 
is no optimal solution 

VI.  CONCLUSIONS 
In this paper, we have presented an application to the 

reactive power planning problem of an EPSO algorithm 
implementation, coupled with a high-performance network 
calculation library. The distinguishing features of the model 
are: 

oThe ability to take into account multiple scenarios 
including under contingency, so that the planned 
network is able to respond to emergency situations. 

oThe ability to take into account different load levels for 
each structural scenario, in a global optimization 
procedure. 

oThe use of an Evolutionary Particle Swarm algorithm 
to perform computations. 

oThe observation of algorithm flexibility and robustness 
in convergence. 

oThe possibility of using the model in EMS or DMS 
environment also for operation – by just setting the 
investment costs to zero. 

 
An interesting foreseen development is coupling the 

algorithm with Monte Carlo simulations responsible for 
generating network states to validate the influence of reactive 
power injection devices on varying network conditions, 
especially in networks with distributed generation. This is 
made possible due to the acceptable running times of the 
EPSO algorithm. This is not straightforward but the potential 
to reuse information from particles allows one to consider 
seriously this development.  

 

VII.  REFERENCES 
[1] J.G. Vlachogiannis and K.Y. Lee, "Reactive power control based on 

particle swarm multi-objective optimization", Intelligent Systems 
Application to Power Systems, 2005. Proceedings of the 13th 
International Conference on, Vol., Iss., 6-10 Nov. 2005 

[2] J.T. Ma and L.L. Lai, "Evolutionary programming approach to reactive 
power planning", IEE Proceedings on Generation, Transmission and 
Distribution, Vol.143, Iss.4, Jul 1996, Pages:365-370 

[3] K.Y. Lee and F.F. Yang, "Optimal reactive power planning using 
evolutionary algorithms: a comparative study for evolutionary 
programming, evolutionary strategy, genetic algorithm, and linear 
programming", Power Systems, IEEE Transactions on, vol.13, Iss.1, Feb 
1998, Pages:101-108 

[4] V. Miranda and Naing W. Oo, "New experiments with EPSO – 
Evolutionary Particle Swarm Optimization," Proceedings IEEE Swarm 
Intelligence Symposium 2006 , Indianapolis, Indiana, USA, May 2006. 

[5] W. Lou Chin, L.M. Proença, V. Miranda, "Demonstrating an Efficient 
Capacitor Location and Sizing Method for Distribution Systems - 
Application to the Macau Network", Actas de ELAB'96 - 3º Encontro 
Luso-Afro-Brasileiro de Planeamento e Exploração de Redes de 
Energia, vol.1, Oct. 1996. 

[6] V. Miranda and N. Fonseca, "EPSO - Evolutionary Particle Swarm 
Optimization, a New Algorithm with Applications in Power Systems ", 
Proceedings of IEEE T&D AsiaPacific 2002 - IEEE/PES Transmission 
and Distribution Conference and Exhibition 2002: Asia Pacific, vol.2, 
October 2002, pp.745-750. 

[7] V. Miranda and N. Fonseca, "Reactive Power Dispatch with EPSO - 
Evolutionary Particle Swarm Optimization", Proceedings of 
PMAPS'2002 - International Conference on Probabilistic Methods 
Applied to Power Systems, September 2002. 

[8] V. Miranda and N. Fonseca, "EPSO – Best-Of-Two-Worlds Meta-
Heuristic Applied To Power System Problems ", Proceedings of 
WCCI'2002 - CEC - World Congress on Computational Intelligence - 
Conference on Evolutionary Computing, Proceedings of, May 2002. 

[9] V. Gopalakrishnan, P. Thirunavukkarasu, R. Prasanna, "Reactive power 
planning using hybrid evolutionary programming method", Power 
Systems Conference and Exposition, 2004. IEEE PES, Oct. 2004., pp. 
1319- 1323 

[10] J. Kennedy and R. Eberhart, "Particle swarm optimization", IEEE 
International Conference on Neural Networks, Proceedings on, 1995, 
vol.4, pp.1942-1948. 

[11] V. Miranda, N.W. Oo, J.N. Fidalgo, "Experimenting in the Optimal 
Capacitor Placement and Control Problem with Hybrid Mathematical-
Genetic Algorithms", Proceedings of ISAP'2001 - Intelligent Systems 
Applications to Power Systems Conference, vol.1, June 2001. 

VIII.  BIOGRAPHIES 

Hrvoje Keko received his graduation degree from Faculty of Electrical 
Engineering and Computing, University of Zagreb, Croatia in 2003. He is 
currently a PhD student at the same University, where he also worked as a 
researcher and teaching assistant. From May 2006 he is a Junior Researcher in 
Power Systems Unit of INESC Porto, Portugal. His primary research interests 
are evolutionary algorithms and computational intelligence applied to power 
systems. 

Álvaro Jaramillo Duque received a degree in Electrical Engineering from 
University of Antioquia, Colombia in 2005. He is currently Junior Researcher 
in INESC-Porto, in Power Systems Unit. His research interests include 
evolutionary computation and swarm theory applied to solving power system 
optimization problems. 

Vladimiro Miranda received his graduation, Ph.D. and Agregado degrees 
from the Faculty of Engineering of the University of Porto, Portugal (FEUP) 
in 1977, 1982 and 1991, all in Electrical Engineering. In 1981 he joined FEUP 
and currently holds the position of Professor Catedrático (Full Professor). He 
is also currently Director of INESC Porto – the Institute of Engineering in 
Systems and Computers of Porto, Portugal, a private non-for-profit research 
institute. He has authored many papers and been responsible for many projects 
in areas related with the application of Computational Intelligence to Power 
Systems, namely including Fuzzy Logic models, Artificial Neural Networks 
and Evolutionary Algorithms. 

 

2% 
3% 
4% 
5% 
6% 
7% 
8% 
9% 

2,1 2,2 2,3 2,4

Trade-off Voltage/losses

MW

V deviation 


