
 

Training a FIS with EPSO under an Entropy 
Criterion for Wind Power prediction 

Abstract—This paper summarizes efforts in understanding the 
possible application of Information Theoretic Learning 
Principles to Power Systems. It presents the application of 
Renyi’s Entropy combined with Parzen windows as a measure of 
information content of the error distribution in model parameter 
estimation in supervised learning. It illustrates the concept with 
an application to the prediction of power generated in a wind 
park, made by Takagi-Sugeno Fuzzy Inference Systems, whose 
parameters are discovered with an EPSO – Evolutionary Particle 
Swarm Optimization algorithm. 
 

Index Terms—Information theoretic learning, fuzzy inference 
systems, power systems. 

I.  INTRODUCTION 
his paper reports research on the application of 
Information Theoretic Learning (ITL) to the development 
of Takagi-Sugeno Fuzzy Inference Systems, and its 

application in the prediction of wind power from wind parks.  
ITL [1][2] is a recent approach to modeling linear or non 

linear mappers that associate input data with output. A mapper 
is taken as a function whose analytic form is unknown, and 
the objective is to use data to discover a set of parameters or 
weights W that build the adequate input-output transfer 
function. This discovery is classically made by training – 
classical mappers may be Artificial Neural Networks or Fuzzy 
Inference Systems. In particular, we will be interested in the 
latter in this paper and, in particular, in supervised training. 

ITL addresses the problem of extracting information 
directly from data. The basic objective is to find a model that 
may allow the maximal amount of information to be extracted 
from known input-output data and used in setting the weights 
W. Because information is the issue, ITL focuses on the 
evaluation of information Entropy, when assessing the 
equivalence of information between the desired response and 
the output of a mapper. 

The most widely adopted measure of this “target vs. 
output” equivalence is correlation, in many cases represented 
by MSE – the Minimum Square Error criterion. It seems so 
“natural” that in many cases it has been adopted without 
challenge. However, it is a criterion related only with the 
second order moment of the distribution of errors (variance) 
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and does not take advantage higher order moments. It is 
known that only Gaussian distributions contain all information 
in the first two moments of the distribution. If a distribution 
(of errors) is not Gaussian, training a system by optimizing 
variance neglects information contained in higher order 
moments. 

The application of Information Entropy and Entropy 
optimization concepts has been tried in many areas related 
with machine learning. However, in many cases there 
principles have been applied using mostly Gaussian 
assumptions for the data distribution, which may be far from 
represented in real data and not correct when adapting 
nonlinear systems. Most of all, Shannon Entropy is the usual 
Entropy measure used and it presents practical difficulties. 
Instead, ITL uses Renyi’s Entropy definition combined with 
Parzen windows (to estimate the pdf – probability density 
function of data) in a manageable procedure. 

This paper presents the concepts of ITL and illustrates its 
usefulness with an application to wind park generation 
prediction, based on average wind speed and direction. Other 
factors can influence the power output of a wind park such as 
air density and turbulence intensity but speed and direction 
have been recognized as the main explanatory variables and 
those than can be more easily measured. 

Wind power prediction for a wind park is more difficult 
than just wind prediction because: 

a) A wind park is a geographically distributed structure. 
b)  Wind speed may vary from generator to generator. 
c)  Tail or shadow effects that reduce the energy of the 

wind behind a turbine become more or less important 
depending on the layout of the park and on the 
direction of wind.  

d) A complicated terrain produces unexpected effects. 
e) The non-linear characteristic of the curve of power vs. 

wind speed of generators adds further complexity to 
the problem. 

The prediction of power output from a wind park is a 
necessary phase in methods of wind forecasting that rely on a 
wind forecast as an intermediate step. This is the case, for 
instance, of methods like Prediktor[3] – that has at the origin a 
model of fluid dynamics equations, and converts it to wind as 
seen by a wind park and then derives power from theoretical 
power curves – but also of eWind[4]. But it is also the case for 
pure statistical methods [5] and for methods based on 
computational intelligence techniques[6]. This prediction is 
highly important presently in Europe, where the growing 
penetration of wind generation will reach heavy percentages 
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in some countries in the coming years (like Germany, Spain or 
Portugal), because of the collective effort in the European 
Union in complying with the Kyoto protocol.  

 Some methods convert wind predictions into wind power 
predictions by using an empirical power curve that tries to 
represent the non-linear behavior of wind generators. Lange 
[7], for instance, derived a model for uncertainties in power 
prediction by relating the standard deviation of their errors 
with the standard deviation of errors in wind predictions and 
the local slope of such power curve. However, the input-
output relation between wind and power is much more 
complex than represented by a single non-linear function, 
which will introduce unnecessary noise and therefore mapping 
methods such as neural networks or fuzzy inference systems 
are better suited to emulate such relation. 

The reason for investigating the application of an Entropy 
criterion instead of the classical MSE, in training a mapper for 
wind power prediction, lies in the fact that errors in wind park 
power output predictions are far from being Gaussian. Even if 
wind predictions had Gaussian errors, the non-linearity of the 
characteristic curve of wind turbines causes predictions to 
display non-Gaussian characteristics. This has been shown, 
for instance, in [8], for 20 sites in Germany over a period of 3 
years. Typically, error distributions from wind power 
prediction models are right skewed and have positive excess 
of kurtosis, meaning that: they are asymmetrical, they present 
a higher frequency of errors to the left of the mean and are 
flatter than the Gaussian distribution. 

Gaussian distributions are the only ones that contain 
information in their first two moments. When dealing with 
error distributions as if they were Gaussian, we miss what may 
be important information that could be used to build a better 
predictor. This is the case when we use a variance criterion 
such as MSE as a criterion to train a mapper: we pass to the 
parameters of the mapper just a fraction of the information 
contained in the input set and leave behind useful information 
in the error distribution. 

Instead, if one adopts an Entropy criterion, we aim at 
extracting all possible information from data leaving behind 
an error distribution with as little information content as 
possible. 

In the work reported in this paper, power predictions will 
be produced by a 1st-order Takagi-Sugeno Fuzzy Inference 
System (TS-FIS) [9]. Instead of training the system with 
classical backpropagation methods, we have opted to use an 
special evolutionary algorithm called EPSO – Evolutionary 
Particle Swarm Optimization [10], to find the optimal weights 
that minimize a performance function of the predictor. 
Traditionally, this function would be the Minimum Square 
Error (MSE) of the output (compared with targets in a training 
set). Applying ITL concepts, we will instead minimize the 
Entropy of the error distribution. 

Our results show that the new concept achieves error 
distributions narrower than with the MSE criterion, denoting 
that most of the times the error is smaller that the one achieved 
with the MSE criterion[11]. As a bonus, we also show that 

EPSO is a suitable method to discover the weights of a TS-
FIS system, whether under MSE or an Entropy criterion.  

II.  TRAINING MAPPERS 
A mapper is a word used to designate a Neural Network, a 

Fuzzy Inference System or, in general, any system that 
emulates an input-output transfer function and whose 
performance depends on the tuning of internal weights or 
parameters. 

We can divide a mapper in three basic modules: its internal 
structure, the performance criterion and the mechanism of 
training. Once defined the type of mapper to work with (class, 
structure), we have the power to act on each module in the 
following way (Figure 1) : 

a) in the internal structure, by modifying the weights 
b) in the performance criterion, by selecting an adequate 

measure of performance 
c) in the training mechanism, by choosing an algorithm 

or procedure to close a feedback loop that updates the 
weights as a function of the performance criterion. 

These are actions that can be taken independently to 
optimize a mapper. 

In the work reported in this paper, we have made the 
following choices: 

a) structure: a Fuzzy Inference System of the Takagi-
Sugeno Type (TS-FIS or just FIS) 

b) performance criterion: Renyi’s Entropy 
minimization, as opposed to Mean Square Error 
minimization 

c) training mechanism: an EPSO – Evolutionary 
Particle Swarm Optimization algorithm, as opposed 
to the classical back-propagation gradient algorithm. 

 
The most important aspect dealt with in this paper is the 

performance criterion. For the ITL approach, using Entropy as 
a measure of performance in a supervised learning context 
(i.e., where one has a defined target T for the mapper output), 
the basic idea is the following: if one could discover a set of 
weights W that would model a mapper whose output would 
present a distribution of (Target-Output) errors as a Dirac 
function (meaning that all errors would be equal, see Figure 
2), we would have reached a machine whose output would 
reproduce exactly the real data – by just adding to the results a 
bias corresponding to the mean of the pdf of the errors, i.e., 
the deviation from zero. 
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Figure 1 – Basic arrangement of a mapper identifying its three main modules 



 

 
Figure 2 – A mapper producing a systematic error ε for all inputs will display 
a error density function like a Dirac function 

 
Therefore, the objective of model development should be 

to discover weights W that lead to a pdf of errors as much 
approximated as possible to a Dirac function. This may be 
achieved by minimizing the Entropy of the error distribution – 
considering that the Dirac function has minimum Entropy. 
The success of ITL is in having discovered a cost function 
representing this objective and having set up a manageable 
procedure to compute the solution. 

III.  ENTROPY 
Entropy is a concept developed in information theory that 

formalizes the notion of information content. The less 
predictable a message is, the larger is its information content; 
a message perfectly know a priori has a zero information 
content. 

Shannon [12] defined the Entropy of a probability 
distribution P = (p1, p2,…, pn) as 
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Although this definition has been widely applied, namely 
in communication systems, other definitions are possible. 
Renyi’s Entropy [13] is defined as 
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In fact, Renyi’s Entropy is a family of functions HRα 
depending on a parameter α. There is a relation between 
Shannon’s and Renyi’s definitions: 
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When α = 2, we have what is called quadratic Entropy 
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This definition can be generalized for a continuous random 
variable Y with pdf fY(z): 
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We can see that Renyi’s Entropy, with its sum of 
probabilities, is much more amenable to algorithmic 
implementation than Shannon’s Entropy with its sum of 
weighted logarithms of probability. 

IV.  PARZEN WINDOWS 
The estimation of the pdf of data from a sample constituted 

by discrete points , i = 1,…,N in a M-dimensional 
space, may be done by the Parzen window method [14]. This 
technique uses a kernel function centered on each point; it 
looks at a point as being locally described by a probability 
density Dirac function, which is replaced or approximated by 
a continuous set whose density is represented by the kernel. If 
a Gaussian kernel is used, the expression of the estimation  
for the real pdf f

M
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Y of a set of N points is a summation of 
individual contributions 
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where G(.,.) is the Gaussian kernel and σ2I is the 
covariance matrix (here assumed with independent and equal 
variances in all dimensions). In each dimension, we have 

2
ikk2 )yz(

2

1
2

ikk e
2

1),yz(G
−

σ
−

πσ
=σ−  

 

ε 

δ (e) 

errors 

pdf 

It is easy to understand that the “size” of the window, here 
defined by the value of σ, is important in obtaining a smoother  
(for larger values) or more “spiky” estimate for fY. 

V.  ITL CRITERION 
Combining Renyi’s definition of the Entropy of a pdf with 

an estimate of the pdf by the Parzen window method, we 
reach an Entropy estimator for a discrete set of data points {y} 
as 
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In this expression we recognize the convolution of 
Gaussian functions, which has the following interesting result: 
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This means that, in order to calculate Entropy, we do not 
have to calculate any integrals but simply the Gaussian 
function values of the vector distances between pairs of 
samples. In ITL vocabulary, V(y) is called the information 
potential (IP) of the data set. As the objective is to minimize 
H, one can instead maximize the information potential V. So, 
Max V becomes the cost function for optimizing a trainable 
mapper with minimum output Entropy [15]. 

The discovery of weights in a mapper may be done by 
applying a suitable optimization method that will discover the 
weights w that minimize the objective function  

)(H   min R2 w  
such as  an evolutionary algorithm like EPSO. 



 

VI.  APPLICATION TO TS-FIS 
Takagi-Sugeno Fuzzy Inference Systems (TS-FIS) may be 

viewed as neuro-fuzzy mappers and are commonly viewed as 
being optimized via supervised training. This means that one 
has a training and a test set with target values T known 
beforehand and the training task has the objective of leading 
the output of the system to become as similar as possible to 
the target. In this case, we are dealing not so much with the 
information content of the output y, but with the information 
content of the errors ε = T – y. From an ITL point of view, 
one should therefore try to minimize the Entropy of error 
distribution, leaving only residual information in the errors 
and making use of maximum information in data to build the 
weight-based model or mapper. 

In the following paragraphs we will describe the 
application of ITL criterion to 0-  and 1st-order TS-FIS; its 
generalization to n-order TS-FIS of polynomial form is 
straightforward. 
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Figure 3 – TS-FIS scheme. Each input pattern X activates some membership 
functions; the combination of these fires a rule k with strength gk. The 
weighted combination of rule firing strengths gives the output of the system. 

 
In a TS FIS, one has rules that are fuzzy in their antecedent 

and crisp in their consequent. A general form of a rule k with 
output yk is 

IF (x1 is A and … and xp is Z) THEN yk = y(x, w) 

The antecedent of rule k is a fuzzy set whose membership 
function gk is the intersection of fuzzy sets describing 
conditions A,…,Z. Usually, the T-norm used to represent 
intersection is the product (of the membership values of each 
input variable). 

The consequent of a rule k is a function fk of inputs. In 0-
order TS-FIS, fk is constant and, therefore, fk = wk. In 1st-order 
TS-FIS, fk is a linear combination of inputs such as in 

fk = wk + wk1x1 + … + wkpxp

The output of a TS-FIS is a weighted sum of the responses 
of all the rules (see Figure 3): 
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In supervised training mode, an input pattern Xi with 

response yi will generate an error relative to a desired target Ti 
as εi = Ti – yi. Under an ITL criterion, one would seek to 

maximize the information potential associated with the 
distribution of errors  

To optimize the performance criterion, we have to discover 
the adequate weights w of the consequents of rules. Other 
parameters may be adjusted by training in TS-FIS. If the 
membership functions of the inputs are Gaussian functions, 
one can also calculate updates on central variance and spread 
of these functions. However, this is not convenient in many 
cases, because the inputs are associated with linguistic 
expressions and the change in the shape or location of the 
membership functions creates dissociation with the linguistic 
labels they are supposed to represent.  

To calculate weights, improvements have been proposed in 
parameter-search algorithms [16] in the line of the back-
propagation principle. However, in this work we have opted 
for a different approach. 

VII.  EPSO AS THE OPTIMIZER 
EPSO – Evolutionary Particle Swarm Optimization, is a 

hybrid in concepts of Evolutionary Algorithms and Particle 
Swarm Optimization, first proposed in [10] and with 
applications in Power Systems [17]. The reader is referred to 
these publications because space constraints do not allow its 
fully developed description. It is an Evolutionary Algorithm 
(close to the family of Evolution Strategies and Evolutionary 
Programming) where the mutation operator is only applied to 
strategic parameters and the recombination operator is non-
conventional: it is, in fact, the “movement rule” of PSO 
(Particle Swarm Optimization) methods. 

Recombination is an operation that produces new offspring 
from some form of combination of parent individuals, chosen 
in the population (the classical recombination operator, in GA, 
is called crossover). The movement rule of PSO generates a 
new individual as a weighted combination of parents, which 
are: a given individual in the population, the best ancestor of 
this individual and the best ancestor of the present generation. 
This may be seen as a form of intermediary recombination. In 
this type of recombination in evolutionary algorithms, a new 
individual is formed from a weighted mix of ancestors, and 
this weighted mix may vary in each space dimension. 
The recombination rule for EPSO is the following: given a 
particle , a new particle results from iX new
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where the symbol * indicates that these parameters will 
undergo evolution under a mutation process, and 

bi – best point found by the line of ancestors of individual i 
up to the current generation 
bg – best overall point found by the swarm of particle in 
their past life up to the current generation 

)1,0(Nw*
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iX  – location of particle i at generation k 
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−−= XXV – is the “velocity” of particle i at   
  generation k  
wi1 – weight of the inertia term (a new particle is created 
in the same direction as its previous couple of ancestors) 
wi2 – weight of the memory term (the new particle is 
attracted to the best position occupied by its ancestors) 
wi3 – weight of the cooperation or information exchange 
term (the new particle is attracted to the overall best-so-far 
found by the swarm). 
wi4 − weight affecting dispersion around the best-so-far 

C − a diagonal matrix with each element in the main 
diagonal being a binary variable equal to 1 with a given 
communication probability p and 0 with probability (1-p); 
in basic models, p = 1 but in advanced models p = 0.2 has 
proven to be more effective in assuring the progress of the 
algorithm, by limiting communication among the particles 
of the swarm – yet another means of shaping the 
recombination operator. 

 EPSO is a self-adaptive algorithm because the weights that 
regulate recombination are taken as strategic parameters and 
are mutated and allowed to evolve. Selection acts on the 
recombination operator weights and, from generation to 
generation, a better (adaptive) recombination operation 
evolves. 

In a diversity of problems, EPSO has been showing better 
performance than other meta-heuristics such as Genetic 
Algorithms or the classical Particle Swarm Optimization 
algorithm [18][19]. It tends to escape from local optima and is 
robust, i.e., generates results with a narrow variance in a series 
of runs for a problem with random initialization. 

VIII.  PREDICTION OF GENERATION FROM A WIND PARK 
In this section, we put together a real world problem 

(predicting power generation in a wind park from speed and 
direction of wind), a mapper (a TS-FIS) and two criteria to 
optimize the mapper: the classic MSE and the ITL Entropy. 

The data for this exercise have been gathered in a region of 
northern Portugal; they are composed of three time series: 
wind speed, wind direction and power output of a wind park, 
collected every ten minutes. We dealt with data collected from 
January 1, 2004 to February 20, 2005. For confidentiality 
reasons, actual power output has been transformed into a 
percentage of maximum available capacity of the park, which 
has a considerable number of generators of close to 1 MW 
each, spread over mountain tops, in a total installed capacity 
of about 40 MW. 

The objective is to show that the application of the ITL 
criterion produces a better mapper than the application of the 
classical Mean Square Error. To demonstrate this, we will 
train two 0-order TS-FIS using an EPSO algorithm; the MSE 
model will find weights that minimize the Mean Square Error, 
and the ITL model will find weights that minimize Renyi’s 
Entropy of the error distribution. We have selected 5000 
points to train and test the FIS and divided them in a training 
set of 1000 points and a test set wit  the rest of the points. 

In Figure 4 we present a plot of untreated data, as collected 
from the SCADA system, showing 9993 measurements of 
wind speed vs. wind park power output. This set presents odd 
values and had to be cleaned up – for instance, you will notice 
points with high wind speed and no power output, due to park 
disconnections. 

 

 
Figure 4 – Plot of wind speed (x axis) vs. power output of the wind park (y 
axis).  Power output is represented in p.u. relative to the total installed 
capacity. Data untreated. 

 
Figure 5 – Distribution of wind speed (in m/s) and direction at the measuring 
point near the wind park. Each point is the tip of a vector whose size is 
proportional to wind speed and angle is related to wind direction. 
 

 
In Figure 5 we plot the same data showing wind speed and 

direction, as measured at a point close to the wind park.  
To test the Entropy performance criterion, we have pre-

defined a 0-order TS-FIS, with the following characteristics: 
a) Two input variables: wind speed S, in m/s, and wind 

direction D, in degrees 
b) The range of S is between 0 and 30, and the range of 

D is between 0 and 360 
c) The range of power output P is between 0 and 1 
d) The universe of discourse of S was partitioned in 5 

fuzzy sets with Gaussian membership function 



 

e) The universe of discourse of D was partitioned in 2 
fuzzy sets with Gaussian membership function 

We have maintained these membership functions fixed and 
only optimized the weights w of the 10 fuzzy rules of the 
system. To find optimal weights, we used a simple EPSO 
algorithm with 20 individuals (particles) and replication factor 
r = 2 (each parent gives birth to two descendants). We used 
Gaussian mutations with learning rate τ = 0.5. 

As stated before, we trained two models with EPSO: MSE 
and ITL. The same stopping criterion was used for both 
models and they only differed in the fitness function used. For 
the ITL model, we present results from using Gaussian Parzen 
windows with fixed size (σ = 0.01). 

Figure 6 clearly shows that the errors from predictions of 
the MSE model have fewer values close to 0 than the 
distribution of errors resulting from the ITL model. 
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Figure 6 – Probability density functions of TS-FIS prediction errors, for both 
models, estimated with Parzen windows, for the training set. The more 
“spiky” shape of the pdf of errors associated with the training under Entropy 
criterion indicates a better prediction error overall. 
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Figure 7 - Probability density functions of TS-FIS prediction errors, for both 
models, estimated with Parzen windows, for the test set. 

 This was an expected result – the Entropy of the ITL 
model error distribution is smaller and it is more close to a 
Dirac function. Of course, we have added the necessary bias 
to obtain a mean value of zero, before generating the 
predictions from the ITL model. Applying these Fuzzy 
Inference Systems to the test set, we obtained the result shown 
in Figure 7, for the probability density functions of the 
prediction errors. Again it is evident that predictions from the 
ITL model are more accurate in a larger number of cases than 
with the MSE model, that uses as performance criterion the 
classical Mean Square error. 

In these figures the error distributions have been estimated 
also using Parzen windows with σ = 0.01. We could have 
presented histograms instead but felt that results would be 
clearer in this form. 

It is interesting to notice that Renyi’s Entropy, for the error 
distribution in the test set, generated by the application of the 
MSE model, is of -0.6648, while with the application of the 
ITL model it is of -1.1782 – naturally, a smaller value. 

To be able to appreciate the impact of these results on the 
time domain, we plot on Figure 8 and Figure 9 two sequences 
of values from the test set, including the actual power measure 
at the SCADA and the predictions produced by the MSE and 
the ITL models. 
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Figure 8 – Comparison, on a subset of the test set (19 weeks), of the 
performance of the two models. The x axis unit is days, but the plotted values 
are hour values. The y axis is in p.u. of nominal installed capacity. Circles 
identify zones where it is clear that the MSE criterion did not perform as well 
as the ITL Entropy criterion. In this figure, one may notice only small 
improvements, but the overall improvement is more clearly depicted in the pdf 
representation. 
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Figure 9 – Comparison, on a subset of the test set (7 weeks), of the 
performance of the two models. The x axis unit is days, but the plotted values 
are hour values. The y axis is in p.u. of nominal installed capacity. It is clear 
that the MSE criterion did not perform as well as the ITL Entropy criterion. 
 

Of course, examining the 5000 points we will find some 
places where the MSE model produced a smaller error.  But, 
as the error distributions show, the ITL model, based on 
Entropy or information content, produces a higher number of 
errors close to zero. 

IX.  CONCLUSIONS 
It must be stressed that the objective of this paper is not to 

present a mature highly accurate prediction model for wind 
park power prediction – but to show that the Entropy concept, 
in the manageable form achieved by the Information Theoretic 
Learning approach, is a powerful tool with the potential to 
lead to the development of better prediction systems. We have 
proved this by producing better results for wind power 
prediction than by adopting the classic MSE criterion. 

This means that researchers and developers should question 
the blind application of the Mean Square Error, as a measure 
of performance of Fuzzy Inference Systems or Artificial 
Neural Networks, or any other model of reality depending on 
parameters adjusted with training. The MSE criterion takes in 
account variance but is not sensitive to information contained 
in moments of higher order in the distribution of errors – and, 
in practice, error distributions are not well behaved nor 
symmetrical or Gaussian (which are the ones that contain all 
information in their first two moments – mean and variance). 

Using Entropy as a performance criterion was not really 
manageable until an approach – Information Theoretic 

Learning – combined it, in the form of Renyi’s Entropy, with 
Parzen windows. Nonetheless, computing this criterion is 
more expensive than computing the MSE criterion, because 
the latter only depends on (the square of) errors and the 
former depends on (the Gaussian of) the differences of errors. 
For off-line systems, however, this extra effort is worthwhile 
in the development phase, if it indeed leads to better 
predictions. 

We have used the occasion to also show that we can train 
Fuzzy Inference Systems with a meta-heuristic such as EPSO 
– Evolutionary Particle Swarm Optimization. We could have 
used a platform such as ANFIS for the application of the MSE 
criterion, but this would not provide weight calculation for the 
Entropy criterion. To put all simulations under the same 
conditions, and not make the comparisons dependent on the 
method used, we have applied the same algorithm (EPSO) to 
both models and built Takagi-Sugeno Fuzzy Inference 
Systems from there. If anything, the Entropy criterion was in a 
disadvantage, because this objective function is not as well 
behaved as the MSE, it may display considerable number of 
local optima. It is also, by the way, the first time EPSO is used 
for such an application, with success. 

The example presented belongs to the intensive research 
efforts presently done in the area of wind prediction and wind 
power forecasting. Any technique that helps in extracting 
more information from data will help, because the problems 
are very difficult, especially in medium and long term 
prediction. Entropy is a measure of information content and, 
therefore, performance criteria using Entropy will certainly 
show useful in the context of building models of reality. 
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