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Abstract–This paper presents an application of Evolutionary 

Particle Swarm Optimization (EPSO) based methods to evaluate 

power system reliability. Population-based (PB) methods appear 

as competitors to the traditional Monte Carlo simulation (MCS), 

because they are computationally efficient in estimating a variety 

of reliability indices. The work reported in this paper 

demonstrates that EPSO variants rely on a biased sampling, 

induced by an objective function, that focuses the search in the 

region of the state space where contributions to the formation of 

a reliability index may be found, instead of conducting a blind 

sampling of the space. The results obtained with EPSO are 

compared to MCS and with other PB methods. 

IndexTerms–Evolutionary algorithms, Monte Carlo sampling, 

particle swarm, population-based methods, reliability analysis. 

I.  INTRODUCTION 

ONTE Carlo simulation (MCS) remains the standard  

method to calculate estimates of reliability indices in 

power systems. This statistically-based method has gained 

importance over analytical models, since the emergence of 

enough computing power in the beginning of the 90’s, coupled 

with the adoption of efficient convergence acceleration 

techniques. The two basic advantages of MCS were: a) 

allowing simulation of realistic characteristics of systems, 

even those not necessarily reducible to formal mathematical 

models, and b) allowing the calculation of distributions and 

not only of mean values (in its simplest form, allowing the 

estimation of variance). Non-chronological models became 

successful then. 

However, as it is usual in such cases, the growth in 

computer power opened the way to the desire to perform 

chronological simulations and this became demanding of 

increased computing power. At the same time, even non-

chronological models became more complex because of the 

availability of computing power at desktop level. As it 

happened in many other cases in the development of science 

and technology, the moment one has at his/her disposal more 

computing power, it becomes almost at once insufficient for 

the new and more complex models one wishes to run. 

Recently, an alternative to MCS started to emerge: 

population based methods. While MCS is a statistically-based 

method, relying on the theorems of sampling to provide an 
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estimate of a result plus some interval of confidence, 

population-based (PB) methods are those that search only for 

the meaningful subset of the state space and are basically 

enumeration algorithms. If all states contributing to a certain 

index could be identified and their probabilities known, the 

index would be accurately calculated. PB methods try, 

therefore, to discover the majority of states, if not the totality, 

so that a good approximation of the index is calculated. 

The methods are called population based because they rely 

on metaheuristics that have a population of solutions 

(individuals, particles) as their core. In this class, one may 

count, for instance, evolutionary algorithms (EA) – 

evolutionary programming or genetic algorithms (GA) – and 

particle swarm optimization algorithms (PSO). They were all 

traditionally developed to be an optimization tool, but the 

problem now is the discovery of a set of states that have 

maximum contribution to the index to be calculated. Thus, 

some mechanism to generate diversity must be kept, otherwise 

all solutions would tend to converge to a maximizing state and 

space exploration would be hampered.  

This paper presents new results confirming the efficiency 

of a population based method – EPSO, Evolutionary Particle 

Swarm optimization, over Monte Carlo to calculate reliability 

indices in a Power System. The results obtained will be 

compared with the results from other researchers and 

conclusions drawn from the experiments designed. 

II.  POPULATION BASED METHODS 

Population based (PB) methods are enumeration methods, 

which count different states in the state spaces such as 

proposed in [1]. PB methods are not statistical methods and, 

therefore, they do not allow the calculation of an interval of 

confidence to the result. Their stopping criterion is usually 

based on the stability of the index being calculated: after a 

number of iterations without meaningful progress, the process 

is considered to have reached a narrow enough neighborhood 

of the real value and the search for more states is stopped. If 

the search process is effective, this will typically happen long 

before any acceptable confidence interval may be calculated 

by a Monte Carlo simulation (counting in terms of iterations 

or visited states): this is the practical value they offer. Of 

course, this is a pragmatic approach taking advantage of the 

fact that, usually, Power Systems are very reliable and the 

subset of meaningfully contributing states to a reliability index 

is much smaller than the entire state space. 

In PB methods, the estimate F̂  of an index F is obtained 

by: 
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(1) 

where, D is the set of sampled failure states, pi is the 

probability of failure state i, Fi is the value of the variable 

being assessed, in state i, and D ⊆ U, is a subset of all possible 

states U . 

It is usual in PB methods to accept that some truncation of 

the space of all failure states Df is ensured (D ⊂ Df ⊂U)). This 

is usually acceptable for a state i whose probability is very 

small (unless the value of Fi becomes unusually large). If the 

search process is adequately conducted, this will be assured in 

practice. Moreover, the truncation of the state space was an 

accepted fact in the past, when analytical models prevailed. 

Besides that, a Monte Carlo process does not guarantee an 

exact value, anyway. 

The proposal of PB methods as a competitor to MCS may 

be traced back to 2001 [2]-[3], when a modified GA was used 

to perform basic reliability indices evaluation of generating 

systems. In [4], one finds a wrapping up of the technique.  In 

all these publications, the authors adopted  

 ,pp Max  i
Di f

=
∈

 (2) 

as the fitness function to drive the GA, i.e. the algorithm 

conducts a search for states maximizing the probability of 

occurrence pi given that system failure is detected in such 

states. This means that the evolution of the GA tends to 

discover failure states with high probability and to reject or 

move away from success states. 

The method uses binary chromosomes and takes advantage 

of possible permutations among equal components of the 

system, such as generators of equal power and forced outage 

rate, which would lead to states of equal probability, in order 

to speed up enumeration.  

In [5], the technique is extended to composite generation-

transmission systems. Furthermore, the authors now proposed 

a second objective function to evaluate chromosomes 

according to the severity of the load curtailment 

consequences; through the calculation of the expected 

contribution EPNSj of state i to system power not supplied 

(EPNS): 

  ,LpEPNS iii =  (3) 

where Li is the load curtailment associated with state i. The 

second criterion becomes 

 ,EPNSEPNS Max  i
Di f

=
∈

 (4) 

The paper, however, falls short of suggesting a push of the 

GA iterations towards the Pareto optimal border of a two-

criterion problem, represented by Eq. (2) and by Eq. (4). 

 In [6], the same authors propose two new models aimed at 

calculating reliability worth in composite generation-

transmission systems, where the GA is no longer driven by 

state probabilities, but by load curtailment value and by 

interruption cost.  

In [7], a particle swarm method was applied to a bi-

objective formulation with two points of attraction (Max L and 

Max p). In [8]–[10], a continuation of the techniques inspired 

in [4] was proposed, using binary chromosomes combining 

with genetic algorithms, particle swarm optimization, artificial 

immune systems and ant colony optimization. Moreover, the 

same approach has proved utility on other areas [11].  

In contrast to MCS, the PB methods require the 

identification of the probability pi of each visited state i. This 

is easily performed with the analysis of the composition of the 

state and the probabilities of failure of each component. By 

assuming independence among system components, the 

probability pi of a failure state i is calculated by multiplying 

the probabilities of failure of each failed component and the 

probabilities of surviving of the non-failed components. 

The consequence Fi of a failure in state i must be evaluated 

exactly in the same way one assesses such value in a MCS 

process. For instance, if one is evaluating the EPNS (Expected 

Power Not Supplied) in a composite generation-transmission 

system, an Optimal Power Flow (OPF) may be necessary to 

determine the minimum value of load interruption. Even if DC 

models are used, it may be a time consuming task if performed 

over and over again for all sampled states. This is why 

reducing the number of analyzed states becomes so rewarding 

in terms of computing effort. 

This attempt to reduce the number of cases for which a full 

calculation is necessary has taken several directions. One of 

them has been the adoption of intelligent pattern recognition 

methods, such as neural networks, to discriminate between 

failure and success states so that only the former are examined 

[12]-[14]. Another is the one discussed in this paper. 

The possible drawback of PB methods is the lack of 

mechanisms preventing an algorithm to visit the same states. 

Because a sort of stochastic exploration of the state space is 

launched in PB methods, repeated visits to the same state may 

well happen if the method does not perform satisfactorily. 

This leads to the concepts of PB method efficiency and 

efficacy. Efficacy measures how good the approximation of a 

PB model to the real value is, while efficiency measures the 

ratio of different states visited against the total number of 

states visited. If the efficiency is low, the algorithm will be 

causing many repeated visits to the same states prior to 

discovering new states not previously counted. 

Also, because states must be enumerated, some sort of 

memory must be organized to keep track of visited states and 

recognize new ones. Searching through such memory will 

become a growingly time consuming task towards the end of 

the process, when many states have already been visited. 

However, it is at the end that this search becomes more 

relevant because the rate of visit repetition grows when the 

majority of significant states have already been visited. 

But, differently from the MCS, in PB methods one may 

take advantage of the fact that many components exhibit the 

same characteristics (for instance, one may have many equal 

generators with the same forced outage rate). This allows the 

calculation of the permutations or combinations of these 

elements that produce the same effect and add the global 

effect of this set to the index under calculation, discarding the 

need to visit all states. If carefully programmed, this may 

result in considerable savings in computing effort. 
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 3 

III.  EVOLUTIONARY PARTICLE SWARM OPTIMIZATION  

EPSO is a hybrid in concepts of EA and PSO, first 

proposed in [15] and with an improved version in [16]-[17]. It 

is an Evolutionary Algorithm with an adaptive recombination 

operator inspired in the “movement rule” of PSO (Particle 

Swarm Optimization). The movement rule of PSO generates a 

new individual as a weighted combination of parents, which 

are: a given individual, in the population, the best ancestor of 

this individual and the best ancestor of the present generation. 

This may be seen as a form of intermediary recombination. In 

this type of recombination in evolutionary algorithms, a new 

individual is formed from a weighted mix of ancestors, and 

this weighted mix may vary in each space dimension. The 

mutation operator is only applied to the weights. 

The recombination rule for EPSO is the following: given a 

particle Xi, a new particle new
iX results from 

 
)k(

i
)k(

i
)k(

i VXX
11 ++ +=   (5) 

  ,)Xb(Pw)Xb(wVwV i
*
g

*
iii

*
i

)k(
i

*
i

)k(
i −+−+=+

321
1

 (6) 

where the symbol “*” indicates that these parameters will 

undergo evolution under a mutation process, and 

bi   best point found by the line of ancestors of individual i 

up to the current generation; 

bg  best overall point found by the swarm of particle in its 

past life up to the current generation; 

) ,(Nwbb
*
ig

*
g 104+= ⇒ particle in the neighborhood of bg; 

)k(
iX location of particle i at generation k; 

)k(
i

)k(
i

)k(
i XXV

1−−= ⇒ “velocity” of Xi in generation k;  

wi1   weight of the inertia term (a new particle is created in 

the same direction as its previous couple of ancestors); 

wi2   weight of the memory term (the new particle is attracted 

to the best position occupied by its ancestors); 

wi3   weight of the cooperation or information exchange term 

(the new particle is attracted to the overall best-so-far 

found by the swarm); 

wi4  weight affecting dispersion around the best-so-far; 

P is a diagonal matrix with each element, in the main 

diagonal, being a binary variable equal to 1 with a given 

communication probability p, and 0 with probability (1-

p); in basic models, p = 1 but, in advanced models, p 

must be chosen from experiments, and values of 0.7 < p 

< 0.8 have been shown to be optimal in many problems 

[16], although highly complex problems seem to require 

a very low non-zero value such as p < 0.2. 

Weights wik are mutated at each iteration according to 

1,3k ,)] ,(N[logww *
ik

*
ik == τ10  and  ,) ,(N ww i

*
i 1044 σ+=  

where logN (0,1) is a random variable, which follows a 

Lognormal distribution from a Gaussian with zero mean and 

unit variance, and τ and σ are externally fixed learning 

parameters that controls the amplitude of mutations. 

 

IV.  SEARCH FOR MEANINGFUL STATES  

This paper reports a set of experiments made to investigate 

and compare the effect in PB methods (especially in EPSO) of 

some factors that may influence performance: (a) the type of 

objective function that induces the algorithm search, and (b) 

the search mechanism. 

To benefit from an enumeration process, a case C will be 

defined as a set of states resulting from permutations of 

generators of equal rating (capacity) and FOR (forced outage 

rate) leading to the same probability of occurrence of their 

combined states and the same load curtailment value. To use 

this concept, one must divide the set of generators into G 

subsets, each with equal generators. 

The probability of case Ck is given by nk×pk, where pk is 

the probability of any state belonging to Ck and nk is the 

number of repetitions given by 

 







××








×








=

Gk

Gk

k

k

k

k
k

M

N

M

N

M

N
n K

2

2

1

1
 (7) 

where, for each case k, Njk is the number of equal generators of 

type j,  j = 1,…,G, and Mjk is the number of generators of type 

j in the down state. 

A case Ck is therefore described by a vector [M1k,…,MGk]. 

The estimation of the EPNS will be done with 

 ∑=
k

kkk  ,LpnEPNS  (8) 

note that pk is the probability of any of the states contained in 

case k. 

A.  Coding 

Some researchers tackled the problem of individual or 

particle coding as a search for system states represented by 

vectors of binary numbers. Then, some decimal equivalent of 

this vector is computed to keep track of visited states [2]. 

Other researchers code chromosomes for the generating 

capacity available in each generating bus as well as the 

capacity of each individual transmission line [7].  

In this work, a particle or individual represents a case and 

not a system state. As mentioned before, it is defined as a 

vector of integers where each element is the number of equal 

components of a given type in the down state. This vector 

results from a rounding process since each dimension is 

allowed to range in an interval of real numbers from 0 to the 

maximum number of equal components in the up state. This 

representation significantly reduces the dimension of a 

particle, especially in the case of power systems with a large 

number of components described by the same Markov model 

and the same indices. 

B.  Type of objective function 

The objective is to conduct a biased search in the state 

space, identifying states that have Li positive. Examining Eq. 

(8), one concludes that the states that the most relevant 

contributions to form the index EPNS will come from larger 

values of L, n and p.  
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Fig. 1. Illustration of the effect of different objective functions in the way they 

push the search in the attribute space of p and L: (A) Maximizing p; (B) 

Maximizing p×L; (C) Maximizing a weighted sum of p and L. 

 

If one disregards n, the search will take place in the space of 

states. If one considers the product n×p, the search will take 

place in the space of cases. Either way, the search can be 

represented in a two attribute space, having load curtailment L 

in one axis and probability (p or n×p) in the other axis. Fig. 1 

illustrates the preferential push associated with each of the 

three types of objective functions studied: 
 

� Type A − Objective functions based on maximizing the 

probability of states or cases: (A1) Max “p” and (A2) Max 

“n×p”; 

� Type B − Objective functions based on maximizing 

expected power not supplied EPSN of a state or of a case: 

(B1) Max “p×L” and (B2)  Max “n×p×L”; 

� Type C − Objective functions pushing to the Pareto board 

of a two objective problem: (C1) Max “ Lpn 21 αα +× ”
 

and (C2) Max “ Lpnpn ××+× 21 αα ”. 

C.  The spreading technique 

An innovation brought by this work is the replacement of 

an optimization procedure by a swarm spreading procedure. In 

fact, the previous works all used the “population effect” to 

identify states, having the population attracted by or towards 

the optimum state (as defined by the objective function). 

However, the interest of the process is not to discover the 

optimum state but, actually, to visit as much significant states 

as possible. So, instead of attracting the population to a point 

in space, this work explores several techniques to provoke the 

spreading of the population or swarm, so that, more states are 

visited and fewer repetitions caused. This hopefully increases 

efficiency and leads to more efficacy in the process. 

Three methods of spreading the search were tested. They 

result from handling Eq. (6): 

� Type X − forgetting the global best bg and resetting the 

memory term bi; 

� Type Y − adding an extra velocity term when particles 

overlap or are very close to one another; 

� Type Z − adding a term related with the best neighbor of 

each particle. 

Beside these three spreading strategies, one must count a 

forth one, which is applied to objective functions of type C: 

� Type W − causing an oscillation on the objective function 

by a periodical variation of the weights α. 

The application of these techniques is done under a set of 

rules described below in algorithm form: 
 

TYPE X: 

Do in all iterations 

If a pre-specified number of generations is reached 

Then 

Reset the memory of the best particle bg and update 

its position according to the fitness of the particles in 

the current population 

Else 

Update the best particle bg position according to the 

traditional EPSO rule. 

For all particles in the population 

If the case represented by particle i under evaluation 

has already been saved 

Then 

Erase particle i memory bi by assigning to its 

fitness a negative value (maximization process) 

Until the convergence criterion is verified. 
 

TYPE Y: 

Do for each particle in every iteration 

Calculate the Euclidean distance to all particles 

If the distance between the current particle P and another 

particle Q is below a pre-specified radius 

Then 

Calculate (P-Q) 

If (P-Q) is close to 0 

Then generate a random (P-Q) 

Apply a spreading function Sp to (P-Q) 

Apply a squashing function Sq() to (P-Q) 

Add Sq(Sp(P-Q)) to Eq. (6) 

Until the convergence criteria is verified. 

The spreading function Sp( ) can be any function, such as 

the inverse of the distance, that will cause a separation of 

particles that are close to one another. The squashing function 

Sq( ) can be any function that places bounds on the value of 

the vector term to be added to the velocity of a particle. 
 

TYPE Z: 

Do for each particle i in every iteration 

Calculate the value of Cfitik given by: 

,
CC

FitFit
Cfit

ki

ki
ik −

−
=  

Select as Best Neighbor bni = Xi  of particle k the particle 

i that has a value of Max Cfitik 

Add to the movement Eq. (6) of particle k the term 

)Xbn(w ki −5  

Until the convergence criterion is verified. 
 

Fiti represents the fitness of particle i and bn constitutes a 

new attractor inserted in the movement equation, while w5 is a 

weight of the neighbor term which is added to the set of 

weights. 
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TABLE I 

IEEE RTS - GENERATING CAPACITY RELIABILITY INDICES 

Adequacy Reliability Indices Values [21] 

LOLE  (hour/year) 9.394179 

LOLF  (occurrence/year) 2.019717 

LOLD  (hour/occurrence) 4.651236 

LOEE  (MWh/year) 1176.3 
 

TABLE II 

IEEE RTS - GENERATING SYSTEM DATA 

Unit type Unit size (MW) FOR Number of units 

1 12 0.02 5 

2 20 0.10 4 

3 50 0.01 6 

4 76 0.02 4 

5 100 0.04 3 

6 155 0.04 4 

7 197 0.05 3 

8 350 0.08 1 

9 400 0.12 2 

 

 TYPE W: (only for objectives of type C) 

Do in each iteration 

Calculate the fitness of each particle by using the 

weights α given by: 

   

( ) . )t()t(   ,Ttsin)t( 2 11 12 ααπα −==
 

Until the convergence criterion is verified. 

In this process, T is the weight changing period. The 

calculation of a good value for T unfortunately requires a fair 

number of trial and error experiments. Type X technique, 

called Dynamic Weight Aggregation (DWA), and Type W 

were, in part, tried in [18] both applied in PSO algorithms 

searching for the Pareto Optimal border of a two-objective 

problem. Type Z was the core technique in [19]. 

V.  TESTS 

A set of tests were carried out with the generating system 

of the IEEE-RTS [20] to assess the reliability indices. The 

choice of this system is justified by two reasons: (a) It is the 

same system used in other publications, therefore allowing 

comparison of results; (b) the exact result is known, which 

allows the assessment of the accuracy of the reliability results 

achieved [21] – see Table I. 

Table II shows that from a total of 32 units, there are 9 

distinct cases of equal generators. This allowed the 

chromosome coding for the EPSO algorithms to have a 

dimension of 9. All runs were done using a swarm of 40 

particles, with a learning parameter of τ = 0.3 and a 

communication probability of p = 0.6. The maximum number 

of iterations was 375, meaning that 30 000 fitness function 

evaluations were done and, so, 30 000 states visited. 

The comparisons among distinct strategies of objective 

function/spreading technique will be measured in terms of 

efficiency, as a percentage of the significant cases visited 

against the total number of cases visited by the particles 

during the search, and also  in terms of efficacy, evaluating the 

proximity of the achieved value to the exact result. 
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Fig. 2. LOLE estimation with different objective functions and hybrid 

spreading strategy. (1) A2/XYZ; (2) B2/XYZ; (3) C1/XYZW; (4) C2/XYZW. 
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Fig. 3. Comparison of efficacy in LOLE estimation for different oscillation 

periods T in strategy C2/XYZW. 

A.  Comparison of different objective functions 

This section presents a comparison of results when using 

different objective functions, for the same mix of spreading 

techniques. A strategy will be called M/N if it uses objective 

function type M and spreading technique of type N. Here, all 

results are for strategies of type -/XYZ or -/XYZW. 

Figure 2 shows that the objective B2 presents the best result 

for the same computing effort. For strategies C1 and C2, the 

period T = 375 was used. A sensitivity study was conducted 

on the case C2/XYZW by varying the oscillation period T for 

several values, and the corresponding results are shown in Fig. 

3. As it can be observed, higher frequency of variation in the 

relative weights in the objective function is beneficial to the 

process. Nevertheless, the best result (for T = 37,5) is not as 

good as the one obtained with strategy B2/XYZ. 

B.  Effect of the different spreading techniques 

Having asserted that objective function B2 (Max npL) leads 

to the best results, one may inspect if all spreading techniques 

contribute to this result. The tests were performed considering 

only the peak load of the system to simplify the analysis. The 

reliability index used was the EPNS (expected power not 

supplied, calculated as  ,pLEPNS ∑=  for all states or 

 ,npLEPNS ∑=  for all cases. To gauge these comparisons, a 

run was also made with the classical EPSO algorithm. Figure 

4 shows a sensitivity study on a B2/X strategy. 
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Fig. 4. Progress of the calculated EPNS with different B2/X strategies and 

comparison with standard EPSO, in 375 generations, 40 particles. 
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Fig. 5. Progress of the calculated EPSN with a B2/Y strategy and comparison 

with standard EPSO, in 375 generations, 40 particles. 
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Fig. 6. Calculating EPNS with a B2/Y strategy and comparison with standard 

EPSO, in 375 generations, 40 particles: evolution of the ratio of case 

repetitions in percentage of the total number of case visited in each generation 

 

One may see that forgetting the global best bg from 

iteration to iteration is the best strategy, and that this spreading 

technique is advantageous over the use of an EPSO standard 

optimization algorithm. Figure 4 also displays the 

characteristic of population based methods, i.e., the asymptotic 

unilateral convergence to the exact value. 

In Fig. 5, one notices the beneficial effect of a spreading 

strategy -/Y. This is especially relevant at later stages when 

new unvisited cases must be discovered. Fig. 6 explains why 

strategy -/Y is more effective. It shows that this strategy leads 

to a smaller percentage of visits to cases already visited (and 

counted) than the standard EPSO. 

In Fig. 7, one finally confirms that strategy -/Z is also 

beneficial in contributing to building up the EPNS index. 
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Fig 7. Progress of the calculated EPSN with a B2/Z strategy and comparison 

with standard EPSO, in 375 generations, 40 particles. 
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Fig 8. Efficiency ratios, in percentage of the total number of cases visited, 

comparing a B2/Z strategy (right, b) with standard EPSO (left, a), in 375 

generations, 40 particles – (1) Significant cases counted; (2) Repeated visits; 

(3) Cases visited below threshold limit. 

 

An explanation may be found in Fig. 8, where the  search 

efficiency of a standard EPSO is compared to an EPSO 

modified with a neighbor term added (strategy -/Z). The 

calculations were made by establishing a limit cut-off 

threshold of 10
-15

, for state probability p, which the case is not 

counted for index build-up. One may confirm that the EPSO 

algorithm with added neighbor term manages to visit more 

than the double of the significant cases when compared to the 

standard EPSO. The “quality” of the cases is, however, 

relevant and not only the quantity. A case may even have a 

small probability but count for many different combinations, 

giving, therefore, a significant contribution to the total index. 

Figure 9 gives another perspective of the quality of the 

search. One may see that strategy B2/XYZ leads to a better 

coverage of the set of interesting cases (with higher 

probability) than the standard EPSO – and this is why the 

count in significant cases is higher, as seen in Fig. 8.  

Finally, a comparison of results is made with those 

published in [4] with the approach named MSGA. This work 

used a GA with a population of 40 and running for 740 

generations. This makes a fair comparison with the EPSO 

algorithm running for 375 generations because both come to 

perform about the same number of 30,000 fitness function 

evaluations. Also, the same cut-off threshold value is used. 

The EPSO algorithm followed a B2/XYZ strategy that has 

been proven to lead to the best results, as shown above. 
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Fig. 9. Charts depicting load curtailment L vs. case probability p, in 

logarithmic scale (the cut-off value of 10-15 is marked) – same number of 

cases identified by standard EPSO (below) versus EPSO with B2/XYZ 

(above). The density of points below the probability threshold is much higher 

in the Standard EPSO case, representing a wasted effort when compared to the 

B2/XYZ strategy. 

 

TABLE III 

COMPARISON IN 3 RELIABILITY INDICES (VALUE AND ERROR) OF  

THE RESULTS OF MSGA [4] WITH EPSO B2/XYZ 

Index MSGA EPSO B2/XYZ 

LOLE (h/year) 9.324000 9.352507 

LOLE Error (%) 0.75 0.44 

LOLF (occ./year) 2.003700 2.010145 

LOLF Error (%) 0.79 0.47 

LOEE (MWh/year) 1163.00 1169.18 

LOEE Error (%) 1.13 0.61 

 

TABLE IV 

RESULTS OF 250 REPEATED RUNS OF EPSO B2/XYZ 

Index Mean Standard Deviation 

LOLE (hour/year) 9.337799 0.013395 

LOLF (occ./year) 2.007116 0.002742 

LOEE (MWh/year) 1166.38 1.93 

No. of Signif. Cases Found 10699 94 

 

Table III presents the results of the comparison in three 

reliability indices (LOLE – Loss of load expectation; LOLF – 

Loss of load frequency; LOEE – Loss of energy expectation) 

in absolute values and in errors, of a single run of EPSO and 

of MSGA [4] relative to the known exact result from [21]. To 

confirm the robustness of the EPSO approach, a series of 250 

runs of the algorithm have been made, in the same conditions 

as previously referred, and the results are in Table IV. One can 

confirm that the result from MSGA [4] is below the 95% 

confidence interval (two standard deviations)  for the value 

obtained from EPSO, meaning that one has 95% confidence 

that an EPSO run will give a better result then the result 

reported in [4]. 
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Fig. 10. Evolution of estimated EPNS (y-axis) with the number of states 

visited (x-axis): MC results (dashed curve oscillating around the real value) 

vs. EPSO results (line converging “asymptotically” to the exact result). 

 

TABLE V 

 COMPARISON OF RESULTS FROM ANALYTICAL (ANA), MC AND EPSO 

ANA EPNS (MW) 14.69575  

MC No. States 31 019 21 587 7 551 1 865 

  β (%) 2.50 3.00 5.00 10.00 

  EPNS (MW) 14.42295 14.31442 14.54172 14.04935 

  [EPNS×(1-1.96β) [13.71622 [13.47273 [13.11663 [11.29568 

  EPNS×(1+1.96β)] 15.12967] 15.15610] 15.96681] 16.80302] 

EPSO EPNS (MW) 14.66185 14.62527 14.23322 11.84474 

  No. States 30 040 21 500 7 500 1 800 
 

C.  Comparison with Monte Carlo 

The final comparison to be made is with a non-sequential 

Monte Carlo simulation run on the same problem. To make 

the comparison clear and not confuse the analysis with 

unnecessary model details, a comparison is presented 

considering the peak load value (see Fig. 10 for EPNS). Table 

V shows a comparison of performance between MCS and 

EPSO, for the estimation of EPNS and for different variation 

coefficients β applied to the MC sampling. Rows 4 and 5 show 

the limits for the confidence interval at 95% confidence level 

in each case. Two things should be noted: the value calculated 

by the EPSO method is in all cases inside the confidence 

interval obtained for the MCS simulation and the value 

obtained by the EPSO method, at 7500 analyzed states, is 

already inside the confidence interval only reached by MCS 

after more than 31,000 states sampled. Finally, the result from 

EPSO is always a lower bound for the exact value, while 

nothing can be said about the MCS result. 

VI.  CONCLUSION 

Population-based (PB) methods are a promising alternative 

approach to Monte Carlo simulation (MCS) in non-

chronological power system reliability assessment. They rely 

on a biased sampling, induced by an objective function that 

focuses the search in the region of the state space where 

contributions to the formation of a reliability index may be 

found, instead of conducting a blind sampling of the space.  

This paper innovates in the application of PB methods by 

using an Evolutionary Particle Swarm Optimization (EPSO) 

algorithm and by systematically adopting a swarm spreading 

strategy instead of an optimization approach. The beneficial 

effects of such options are evident in speeding up calculations 
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for the same accuracy or in obtaining a better accuracy for the 

same computing effort. Comparisons confirming this assertion 

have been made with previously published results and with a 

pure optimization strategy. 

PB methods are not statistical-based approaches and, 

therefore, no confidence interval can be calculated. However, 

they can be tuned with MCS and also with fast analytical 

convolution (FAC) methods to ensure the correct stop 

criterion. Moreover, PB methods can be considered as 

excellent competitors to FAC-based methods, and also to 

MCS-based methods equipped with variance reduction 

techniques. Finally, this work helps opening another research 

frontier to tackle power system reliability assessment. 
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