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Abstract—This paper propose an approach to multi-objective 

maintenance policy definition for electrical networks. Maximum 
asset performance is one of the major goals for electric power 
system managers. To reach this goal, minimal life cycle cost and 
maintenance optimization becomes crucial, while meeting 
demands from customers and regulators. This necessitates the 
determination of the optimal balance between preventive and 
corrective maintenance in order to obtain the lowest total cost. 

The approach of this paper is to study the problem of balance 
between preventive and corrective maintenance as a 
multiobjective optimization problem, where we have the 
customer interruptions on one hand and on the other hand the 
maintenance budget of the network operator. The problem is 
solved with meta-heuristics developed for the specific problem, as 
well as with an Evolutionary Particle Swarm Optimization 
algorithm. 

The maintenance optimization is applied in a case study to an 
urban distribution system in Stockholm, Sweden. Despite a 
general decreased level of maintenance (lower total maintenance 
cost) a better network performance can be given to the 
customers. This is achieved by focusing the preventive 
maintenance on components with a high potential for 
improvements. Beside this, the paper constitutes a display of the 
value in introducing more maintenance alternatives for every 
component and to choose the right level of maintenance for the 
components with respect to network performance. 
 

Index Terms—Asset management, Component reliability 
importance, Maintenance, Multiobjective optimization, Power 
distribution systems.  
 

I. INTRODUCTION 
AXIMUM asset performance is one of the major goals for 
electric power system managers. To reach this goal 
minimal life cycle cost and maintenance optimization 

becomes crucial while meeting demands from customers and 
regulators. One of the fundamental objectives is therefore to 
relate maintenance to system reliability performance in an 
efficient and effective way. This is the aim of several 
maintenance methods such as the Reliability Centered 
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Maintenance method [1] and further developed methods such 
as the Reliability Centered Asset Management [2]. In this 
context it becomes crucial to find the solution to the problem 
of optimal balance between corrective and preventive 
maintenance (the maintenance problem). In the literature a 
number of methods exist, e.g. [3], [4] and [5], that focus on 
capturing the optimal level of maintenance with respect to a 
specific objective, such as minimizing a specific interruption 
index while meeting a budget constraint. This paper takes the 
concept of these methods further by applying the methods of 
multiobjective optimization to the maintenance optimization. 
This is done in a similar approach as in the distribution system 
development planning described in [6], where a multiobjective 
approached is utilized. The difference is that the proposed 
method is aimed at maintenance instead of planning. 
Furthermore, the presented method is developed in order to 
deliver optimal solutions for computational intense reliability 
calculations that are based on simulations. This is an attribute 
that allows for detailed modeling of the studied network. The 
multiobjective approach puts the customer interruption on one 
hand and the maintenance budget of the distribution system 
operator (DSO) on the other. Hence, the proposed method 
provides a span of optimal solutions that the decision maker 
can chose between. Each with different expected outcomes for 
maintenance budget and customers. 

 

II. OPTIMIZATION PROBLEM, METHOD 
The approach of this paper is a maintenance policy 

optimization, which results in a number of interesting 
solutions that the decision maker can chose between. The 
solutions are developed by utilizing component reliability 
importance indices, derived from Monte Carlo reliability 
simulations. The method is divided into five essential 
concepts: 

A. Reliability Monte Carlo simulations. 
B. Component reliability importance indices. 
C. Multiobjective approach. 
D. Optimization heuristics. 
E. Selection of optimum (results). 

 
The merit of this paper lies within the combination of these 

concepts, below presented in their respective subsection.  

A. Event driven Monte Carlo Simulation 
The Monte Carlo simulation method is based on an event 

driven approach. I.e. a simulation with variable time steps, 
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where the time between significant events is identified. In this 
context significant events are state changes of components. 
Minimal cut-sets are used to calculate the system behavior as a 
result of component status. In the current setup the simulation 
runs for a specified number of cycles. At the simulation start 
we assume that all components are functional. The next step is 
to generate the time to failure for every component. Time to 
failure is based on the component’s failure rate, which in turn 
is based on component parameters, e.g. level of maintenance 
and inherent failure rate. We then move forward in time to the 
first event, in our case a failed component. The changed status 
of the failed component is then recorded along with the effects 
of the failure. The list of coming events is consequently 
updated with the generated repair time for the failed 
component. This is followed by the identification of the next 
event in the simulation. Probably being the repair of the failed 
component but not impossibly an occurrence of another failed 
component and consequences of that (e.g. a 2nd order minimal 
cut-set failure). By recording the effects of the different 
system states and their durations we obtain reliability data, 
such as the utilized component importance index and more 
traditional reliability data such as customer interruption costs 
and SAIFI and SAIDI [7]. The simulation approach and its 
implementation into the reliability analysis tool RADPOW is 
presented in [8].  

Simulations compared to analytical calculations make the 
optimization more complicated. This since Monte Carlo 
simulations to a certain degree delivers stochastic output and 
in general can be said to require more calculation-time per 
reliability calculation. The simulations do, however, bring us 
the possibility of implementing more complicated model 
behaviors. 

B. Component reliability importance index 
Component reliability importance indices provide the 

connection between component and system reliability 
performance [9]. The component reliability importance index 
used in this paper, IM [10], corresponds to the expected total 
customer interruption cost caused by the studied component 
over a specific time interval (usually one year). The index, 
which was developed for calculation by simulation [10], is 
calculated by accumulating the total interruption cost caused 
by every interruption to the finally causing component over all 
simulated years. The accumulated cost for every component is 
then divided with the total simulation time in order to get an 
expected interruption cost per time unit. The index is defined 
as follows (1): 
 

T
K

I iM
i =   [€/yr]              (1) 

 
where Ki is the total accumulated customer interruption cost 
over the total simulated time T for component i. The index 
gives an indication of which components should be prioritized 
for preventive maintenance actions (or in some cases re-
designs of the structures that result in the high value of IM). 
Moreover, IM gives information on components that do not 
cause much interruption cost for the network. It might for 
example be beneficial to reduce preventive maintenance for 

these components. However, to reach the best possible 
solution, this information needs to be adequately combined 
with knowledge about available maintenance actions, their 
costs and estimated effects. 

C. Multiobjective approach to the optimization problem 
The studied problem, finding the optimal balance of 

preventive and corrective maintenance, is approached as a 
multicriteria/multiobjective optimization problem. On one 
hand we have the customers requirements on power delivery 
and on the other hand we have the maintenance cost for the 
DSO. In this study we have chosen to use the total customer 
interruption cost as the measure of network performance from 
the customer perspective. The maintenance costs are closely 
related to the analyzed network, its components, structure and 
available resources.  

It is possible to extend the multiobjective approach by 
studying every load point’s availability as an individual 
objective. Some cases might for example call for pure pareto 
improvements [11], where all customers are viewed 
separately, i.e. improvements that reduce costs or at least keep 
costs at current level for all involved parties. To study all 
customers independently while requiring pareto improvements 
narrows down the feasible solution space. Furthermore, with 
more objectives the solution space fast becomes difficult to 
grasp with increasing number of load points. 

It is interesting to note that the two objectives (customer 
interruption cost and cost of maintenance) not entirely points 
the solution into two different directions since the cost of 
corrective maintenance to a certain degree correlates with the 
customers inconvenience. 

D. Heuristic optimization approach: AGEBOM – 
Approximate Gradient Evaluation Bi-criteria Optimization 
Method 
The proposed optimization is based on an aggregated 

auxiliary objective function that incorporates the two 
objectives, the customer interruption cost and the maintenance 
cost of the network (both corrective and preventive).  

 
1) Objective function 

A scaling between the customer interruption cost and the 
maintenance cost of the network is introduced. This scaling is 
varied in order to obtain a number of non-dominated solutions 
with specific tradeoff between customers and DSO. The 
objective function of the optimization is presented in (2). 
 
min s*CIC + CCM + CPM  [€/yr]        (2) 
 
where CIC [€/yr] is the expected yearly system customer 
interruption cost, CCM [€/yr] the cost of corrective 
maintenance, CPM [€/yr] the cost of preventive maintenance 
and s is the scale factor (tradeoff). The unit of the scale factor, 
s, becomes DSO money per unit of customer money. The 
scale factor constitutes a translation of the expected customer 
interruption costs into terms of DSO costs. CIC is obtained 
from simulations [10] and depends on the maintenance 
strategy. The values of CCM and CPM are based on the 
maintenance strategy; see the case study for an example. The 
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three different costs in the objective function depend on the 
network and its components. That is components failure rates, 
repair times and network structure and operation. In addition 
the simulation delivers the component reliability importance 
index, IM [€/yr], for every component [10]. The index IM 
corresponds to the average yearly customer interruption cost 
caused by the specific component. How CPM and CCM are 
calculated depends largely on the studied network; for this 
paper these costs are presented in the case study. CIC is 
calculated according to (3) [12]. 
 

 ( )IC
L L L L L L

L
C k P c Prλ= +∑  [€/yr]      (3) 

 
where CIC is the total expected yearly customer interruption 
cost for the system, PL [kW] average power,  λL [f/yr] and rL 
[h/f] are reliability indices for every load point L, and kL [€/f, 
kW] and cL [€/kWh] are cost constants representing the 
customer types and composition for every load point L. 
  

2) Workflow of optimization 
Since the reliability calculations of customer interruption 

costs and component importance are derived from 
simulations, the optimization approach is pushed toward a 
method that requires few calls on calculation of objective 
function and other outputs. Another aspect is that the 
simulations constitutes a “black box” that an optimization 
routine can not see through. However, the concept of 
component reliability importance indices allows for a certain 
degree of visibility into the “black box”.  

It is assumed that the caused interruption cost is linearly 
dependant on the failure rate of the component, when no other 
data is changed. I.e. assuming that a relative change in failure 
rate result in the same relative change in customer interruption 
cost. Given maintenance actions and estimates on failure rate 
changes and maintenance cost/savings caused by these, a cost-
benefit ratio can be developed. That is a ratio between the 
change in interruption cost and the cost/savings of the 
investigated action. By doing this for all available actions for 
all components the available actions can be ranked. 

The optimization, which can be described as a steepest 
descent method, commence with a leap. The leap introduces 
the best cost-benefit ratio actions for each component into the 
solution. This is done despite violating the assumption above. 
The leap is followed by a stepwise approach that does not 
violate the above assumption. I.e. all available maintenance 
actions are evaluated, but only the most profitable one is 
selected, given that it is expected to result in a better objective 
function. The optimization is illustrated in Fig. 1. 

The start condition for the optimization is that all 
components are at their initial (current) state. Then a 
reliability calculation (simulation) is performed. The index IM 
which is an output from the simulation is used in order to 
estimate the impacts on the objective of all maintenance 
actions available, see (4). The estimates are then used to select 
all seemingly beneficial maintenance actions (this is the leap). 
This despite that every maintenance action is evaluated 
singularly, neglecting the consequences of all the other 
actions. This approach does not warrant that a local optimum 

is reached and hence we proceed with more cautious “steps”. 
I.e. we continue with a new simulation based on the chosen 
maintenance actions from the previous step/leap. As before, 
we evaluate all available maintenance actions, but here only 
select the most beneficial maintenance action (hence this is 
called a step). The steps and reliability calculations are then 
performed until no more improvements are found. The 
achieved optimal point is stored. One optimization cycle is 
then accomplished and the scale, s, is incremented, the 
calculation continues with a leap starting from the previous 
optimum. This is continued until there are no more scales to 
optimize for. 

 
Fig 1. Flowchart for the optimization process. 
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In both leap and step the following approximate evaluation 

of each individual maintenance alternative is made: 
 

, , , ,

M
CM PM i

i j i j i i j i j
i

IP C C sλ λ
λ

≈ Δ + Δ + Δ   [€/yr, action]  (4) 

 
where Pi,j is the expected change of the objective function if 
maintenance alternative j is implemented for component i, s is 
the scale factor of customer interruption costs, λ is the 
component failure rate, Δ denotes the change from the current 
maintenance policy in the optimization process. Ci

CM 
corresponds to the expected corrective maintenance cost that a 
failure of component i incur for the DSO. ΔCPM depends on 
the cost difference of introducing the studied maintenance 
action compared to the current policy. Equation (4) is 
approximate since the last term is an approximation on how 
the customer interruption cost will change. For each 
component in the leap the lowest value of P is chosen for the 
next simulation. In the steps only one action is chosen, i.e. 
based on the lowest value, given that this value is below zero. 

E. Results and selection of optimum 
Given that the method has not found local optima. The 

suggested approach will deliver a number of optimal points, 
for an example see the case study below. These points will be 
located on the Pareto border and are all optimal from a 
specific view. Which solution that is selected by the decision 
maker depends on many factors such as the current status and 
behavior of the network. The different solutions provide the 
decision maker with important information on expected 
consequences of the different maintenance policies. 
 

III. CASE STUDY 

A. Network, the Birka system 
The studied Birka system is located in the southern parts of 

Stockholm. The name is derived from the former Birka Energi 
AB, of which the presented network was a part. Birka Energi 
is now a part of the Fortum consortium. The system, see Fig. 
2, which is thoroughly presented in [13] and [14], includes a 
220/110kV station (Bredäng) and one 110/33kV, 33/11kV 
station (Liljeholmen). These two stations are connected with 
two parallel 110kV cables. From the Liljeholmen station there 
are two outgoing 33 kV feeders, Högalid (HD) and Railway 
(SJ), there are also 32 outgoing 11kV feeders (LH11), here 
represented by one average set of components (28-35). The 
model includes 178 components, numbered 1-58, with 16 
copies of component 28-35. The components are divided into 
five types, these are; circuit breakers (e.g. c2), cables (e.g. c5), 
transformers (e.g. c3), bus bars (e.g. c1) and fuses (c34). In 
the network, every component has a specific failure rate and 
repair rate. In total, this network serve approximately 38 000 
customers where the load point SJ consist of one customer, 
that is the railway. The load point LH11 represent one average 
load point of 32 actual outgoing feeders, which in total serve 
14 300 customers. The load point HD feeds approximately 23 

400 customers [14]. In the model we have assumed piecewise 
constant failure and repair rates for every component, based 
on investigations of the network [14]. Note that the constant 
failure rates should be interpreted as population average 
values for the specific type of component population. 
Averages that can be modified by selected maintenance 
policies for the individual. Furthermore, the components are 
assumed to be independent.  

 
Fig 2. The studied system [13]. 

B. Maintenance 
In this application study the maintenance actions are 

modeled on an aggregated level, i.e. if the components should 
be maintained as of today or if the preventive maintenance 
should be increased or decreased. This is modeled as there are 
three different preventive maintenance alternatives for each 
component in the network: 
 

1. Keep current preventive maintenance level, average 
failure rate is assumed to remain unchanged, no 
change in cost for preventive and corrective 
maintenance. 

2. Improve the preventive maintenance, the average 
failure rate is assumed to be halved for the studied 
component, the additional cost of this is one cost 
unit. 

3. Decrease the preventive maintenance, the average 
failure rate is assumed to be doubled for the studied 
component, cost savings; one cost unit. 
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Furthermore, it is assumed that the cost of one corrective 
maintenance action is β cost units. In the basic case β is put to 
10 cost units. The cost of corrective maintenance is here 
chosen in relation to the maintenance effects in order to put 
incentives in the operator’s maintenance budget to perform 
preventive maintenance. Studies have been performed for 
other values of β, see the sensitivity study section of this 
paper. The relationship between changes in failure rate and 
cost of corrective maintenance is displayed in (5). 
 

i
( )CM new

i iC β λ λΔ = −∑              (5) 

where i denotes component number. The change in preventive 
maintenance is calculated according to the formula in (6): 
 

(  ) (  )PMC sum incr maint sum decr maintΔ = −     (6) 
 
where sum(incr maint) corresponds to the number of 
components with increased preventive maintenance actions 
and sum(decr maint) is the number of components with a 
decreased maintenance. 

Note that the assumed maintenance alternatives in general 
“punish” relocation of maintenance resources in terms of total 
number of component failures. E.g. studying two components, 
both with the same initial failure rate, λ, and both being at 
alternative 1. By moving resources, i.e. putting one 
component to alternative 2 and the other to alternative 3, this 
results in the sum 2 1/2 λ (compared to 2 λ, before 
maintenance reallocation). 

C. Results 
The result of the optimization routine is a number of 

optimal points (solutions) which are all optimal from a 
specific point of scale. In Fig. 3 a number of optimal points 
are displayed, as well as the starting point (present situation). 
Note that since every optimization is built on results from a 
separate simulation, some of the optimal points are dominated 
by other optimal points. A point is dominated, when another 
point exist which is better in at least one criterion without 
being worse in any other criteria. The existence of these points 
is explained by the fact that every optimization is based on 
one or more (individual) simulations. In the previous work it 
has been seen that with more iterations in each simulation the 
number of dominated points decreases. In Table I more details 
are found for the presented solutions. The solutions 7-13 all 
dominate the “initial point”. Even when considering SAIDI 
and SAIFI solutions 8-13 dominate the initial point, despite 
SAIDI and SAIFI not being directly included in the 
optimizations. The solutions 7-13 are probably more 
interesting than the other solutions obtained, since they do not 
make the situation worse for any of the two involved parties. 
This is however only true if we look at the total customer 
interruption cost. If we study every load point separately it can 
be seen in Table I that the interruption cost for node SJ is 
higher for solution 1-13 than for the starting point. One 
approach to this somewhat problematic situation might be to 
state that the solutions 7-13 constitute pareto improvements 
from a system perspective, which imply that we utilize our 

resources for the common good of the customers. Another 
approach might be to put constraints on the optimization, so 
that no customers will get worse reliability than of today, or 
penalize customer node interruption costs that are above 
today’s level. If we want to investigate this issue further we 
need to split up the utilized customer objective into three new 
objectives, i.e. one measure for every load point.  It is 
noteworthy that such approach most likely will be less 
efficient from a global perspective. In this paper we recognize 
the possibility of approaches that consider individual 
constraints on customer nodes. Nevertheless we continue the 
study with the focus on the common good, i.e. lowest total 
cost. 
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Fig. 3. The optimal solutions calculated. The x-axis corresponds to changes in 
maintenance budget in comparison to today’s budget. Note the starting point 
for the optimization (not an optimum), located at (0, 51 912). The arrows 
illustrate the optimization process to one optimum.  
 
 

TABLE I 
OPTIMIZATION RESULTS 

   Meas.
 
Solution 

IC
LHC 11

[€/yr]

IC
HDC  

[€/yr]

IC
SJC

[€/yr]

∑CIC 
[€/yr] 

CPM 
[units] 

∑comp.
failures

[f/yr] 

SAIFI 
[int/yr]

SAIDI   
[h/yr] 

Org. 47009 4283 620 51912 n/a 4.01 0.144 0.271 

1, 2, 3 73734 8049 1160 82943 -144 4.66 0.211 0.451 
4 72103 7204 1046 80353 -142 4.64 0.192 0.434 
5 70612 6302 909 77823 -140 4.63 0.175 0.416 
6 58492 6361 917 65770 -124 4.57 0.174 0.356 
7 46181 4726 788 51695 -87 2.91 0.121 0.280 
8 45589 4225 725 50539 -85 2.90 0.113 0.271 
9 39038 3398 727 43163 -66 2.86 0.104 0.227 

10, 11 29930 3147 694 33771 -33 2.57 0.098 0.178 
12 29449 2934 698 33081 -29 2.56 0.092 0.174 
13 24767 2929 701 28397 3 2.43 0.089 0.151 

14, 15 23763 2495 515 26773 17 2.42 0.079 0.141 
16 23242 2232 409 25883 30 2.35 0.074 0.135 
17 23052 2213 344 25609 32 2.33 0.074 0.134 
18 23116 2091 347 25554 36 2.31 0.073 0.133 
19 23042 2095 307 25444 37 2.30 0.073 0.133 
20 23170 2068 306 25544 39 2.28 0.073 0.133 

“Org.” represent the non-optimized original solution, i.e. maintenance policy 
as of today. Data used in the optimization process are marked with bold 
caption. A number of solutions are identical; these are presented on the same 
row. CPM corresponds to the net change of preventive maintenance units. 
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D. General discussion of results 
If we study the optimization problem from the perspective 

of the DSO, one approach is to see how much we can decrease 
the maintenance budget, without decreasing the service to the 
customers. This is performed by identifying the solution with 
the nearest lower customer interruption cost compared to the 
solution of today (0, 51 912). The maintenance cost difference 
between the starting point and the now reached optimal point 
gives us an estimate of today’s maintenance policy 
inefficiency1. That is, how much it is possible to save on 
today’s maintenance policy without reducing average 
customer service. This approach suggests solution number 7 
for the case study, which significantly would reduce the cost 
of preventive maintenance. Likewise, we can perform this 
operation the other way around by going down from today’s 
(0, 51 192) solution to the pareto border in order to localize 
the point that given today’s budget will give us the most 
satisfied customers. This approach suggests solution 13. 
According to Table I, this solution would with the utilized 
assumptions result in an almost halved customer interruption 
cost. While the preventive maintenance is increased for this 
solution the cost of corrective maintenance is lowered, 
resulting in a slightly lower maintenance cost, compared to 
today’s maintenance cost. 

E. Results continued for one optimum (no. 10) 
In this section we study one of the reached optima in more 

detail, namely optimum number 10, to exemplify a specific 
solution. Normally the DSO should choose a suitable solution. 
In this case we continue and assume that the DSO choose 
solution number 10. This might be motivated by that this point 
has a suitable combination of lowered customer interruption 
costs and lowered maintenance cost, one additional advantage 
of this point is that the interruption cost for node 3 is relatively 
close to the starting value. 

The resulting maintenance plan says that the preventive 
maintenance level should be increased for 56 components 
while decreased for 89 components and kept the same for 33 
components. Fig. 4 presents an illustration of the suggested 
actions for optimum number 10 applied to the network. 

 

IV. VALIDATION AND SENSITIVITY ANALYSIS 

A. Validation of optimization method 
The presented problem has been approached with an 

additional tool, the Evolutionary Particle Swarm Optimization 
(EPSO) algorithm, developed at INESC Porto [15].  

The EPSO algorithm can be described as a combination of 
evolutionary algorithms [16] and the particle swarm opti-
mization algorithm (PSO) [17]. Somewhat simplified the 
EPSO works with a number of solutions (called particles) in 
the problem space. These particles have certain properties 

 
1Since the studied example is based on partially fictive data, no definite 

conclusions can be drawn about the current management of the studied 
network. 

 

such as position, inertia and memory. Evaluation of every 
particle is  

 
Fig. 4. Illustration of optimum number 10. 
 
performed (calculation of objective function). Based on this 
evaluation a stochastic tournament is carried out, where good 
particles have higher chance to stay in the solver process than 
the less “good” particles. The particles “move” according to a 
combination of where the other particles are located 
(cooperation), inertia and memory (of the best point ever 
visited for the specific particle). The “surviving” particles 
from the tournament serve as a base for the generation of new 
particles replacing the ones sorted out. Furthermore, the 
method automatically mutates the weights of the different 
movement aspects (inertia, cooperation and memory). The 
mutation of the weight corresponds to an auto-tuning of 
parameters in a particle swarm optimization. Basically the 
difference between PSO and EPSO is that EPSO remove bad 
particles and spawns new ones and the mutation of movement 
weights. 

The AGEBOM algorithm results were compared with the 
results from EPSO. Since EPSO to a certain degree utilize a 
random approach and investigate several solutions 
simultaneously the method is not as prone as AGEBOM to get 
stuck in local optima. Hence we investigated if the AGEBOM 
algorithm’s solutions could be improved. No indications of 
improvements could be found, which indicates that the given 
problem formulation is without local optima that the 
AGEBOM get stuck in. 

Since the AGEBOM algorithm require relatively few calls 
to the objective function and the objective function in this case 
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is based on simulations the method becomes fast compared to 
the more intricate approach of the EPSO algorithm. 
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Fig. 5. Calculation results for EPSO (o) and AGEBOM (x). Note that the 
solution at (0, 51 912) corresponds to today’s maintenance policy. 
 

The illustration above, Fig. 5, shows on the effectiveness of 
the developed AGEBOM algorithm compared to EPSO. The 
interpretation of this result is that the AGEBOM is well 
adapted to the studied problem. More complex problems may 
result in better relative performance by the EPSO algorithm. 

B. Sensitivity analysis 
One might argue that the above used assumptions on how 

the failure rate changes with changes in maintenance are 
somewhat optimistic. Hence, we look at an example of 
reduced efficiency in the allocation of preventive maintenance 
resources and a more expensive corrective maintenance. In 
this scenario the cost of corrective maintenance is tenfold 
compared to the first studied case (β=100). Increased 
preventive maintenance results in only 10% reduction of the 
failure rate and decreased preventive maintenance results in 
100% increased failure rate (as before). 

Despite the effects of the changes, presented above, the 
process produce improvements, i.e. where we for example are 
capable of reducing the customer interruption costs by 
approximately one fifth while keeping today’s maintenance 
budget. See Fig. 6 for an illustration of the results. 
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Fig. 6. Illustration of optimal points for expensive corrective maintenance and 
big losses in reallocation of maintenance resources. Note that the solution at 
(0, 51 912) corresponds to the present maintenance policy. 
 

It can be seen in this section that there still is a value of 
optimizing the maintenance despite large “penalties” in 
reallocating maintenance resources. The benefits do not 
become as significant as with the basic assumptions, but still 
there are benefits of the optimization. This is an effect of 
providing an existing solution (today’s policy) with more 
alternatives that we optimize over. What actually is shown in 
this section is more of an illustration on how the results may 
vary within an actual outcome. And that there likely is value 
in introducing more maintenance policies for every 
component and to chose the right level of maintenance for 
each component with respect to network performance. For a 
more extensive sensitivity analysis, where for example only 
the reallocation of resources is penalized harder, see [18]. 
 

V. DISCUSSIONS & POTENTIAL IMPROVEMENTS 

A. More parties 
This paper only studies the problem of maintenance from 

two perspectives, i.e. customers and DSOs. This is somewhat 
of a simplification since there are more parties involved in the 
process, such as regulatory authorities and third part 
maintenance providers. Regulatory issues can be accumulated 
within a widened definition of maintenance budget. For 
example penalties that the DSO has to pay because of to low 
reliability in one area and/or increased/decreased maximum 
allowed charge per kWh can be incorporated into the model. 
Third part maintenance providers may also complicate the 
optimization further, but are in this paper considered to 
perform specified policies and their impact is not further 
analyzed here. 

B. Network performance from customer view 
To use customer interruption costs as a performance 

measure may seem somewhat far-fetched but carries a number 
of advantages. Among those advantages is the possibility to 
incorporate both the effects of short power failures (kW) and 
of longer interruptions (kWh) in one measure. Additionally it 
is possible to include concepts of power quality and 
importance of different customers into a customer cost 
perspective. Furthermore, money is a measure that is possible 
to communicate throughout organizations and to people, all 
the way from the customers to the board of the DSO as well as 
regulating authorities. It is completely possible to establish 
values for interruption costs; this is performed in a number of 
studies e.g. [19] and [20]. Furthermore this aggregated 
measure is quite widely used in the process of network 
performance assessments. In Sweden [21] and Norway [22] 
the regulation of DSOs are partly based on interruption costs. 
Many companies use the customer interruption cost in 
investment planning. It is, however, perfectly possible to 
replace the proposed measure with another measure in the 
optimization, for example a weighted index based on SAIDI 
and SAIFI, as proposed in [3]. A modification in network 
performance measure requires a new component importance 
index, to replace (1). The conclusion being that the proposed 
customer network performance measure is adequate but that it 
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may be replaced/modified due to situation specific reasons 
(e.g. a regulation based on SAIDI and SAIFI). 

VI. CONCLUSION 
The results from the maintenance optimization are 

interesting. Despite a general decreased level of maintenance 
(lower total maintenance cost) a better network performance 
can be given to the customers. This is achieved by focusing 
the preventive maintenance on components with a high 
potential for improvement with respect to system 
performance. In the end this shows that there is value in 
introducing more maintenance policies for every component 
and to choose the right level of maintenance for every 
component. Here we have proposed a tool for this selection 
process. 

The case study requires more data in order to demonstrate 
the true benefits of the maintenance policy optimization. Data 
on costs of corrective and preventive maintenance and 
estimates of how preventive maintenance affects the 
components are needed. However, in the less optimistic 
sensitivity analysis we still show on a possibility to improve 
the maintenance by use of the proposed method. The 
optimization method is based on time efficient heuristics, 
which include a risk of getting stuck in local optima in more 
complicated problem formulations. Here is the strength of 
using the EPSO algorithm in the optimization apparent. 
Although more costly in terms of computation time it is a tool 
that may prove very useful when optimizing more complicated 
problems. 
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