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Wind-hydro coordination using autoencoders to 
perform space dimension reduction and speed 

up evolutionary processes 
Vladimiro Miranda, Fellow IEEE    and   Luís Costa 

  

Abstract − This paper reports the application of neural 
networks denoted “autoencoders” in order to reduce the 
dimension of the search space in complex optimization problems. 
This allows a more efficient search by meta-heuristic algorithms, 
with a reduction in computing time and an improvement in the 
quality of results. The technique, coined as miranda, is illustrated 
with an application of an EPSO (Evolutionary Particle Swarm 
Optimization) algorithm to problems of medium term wind-
hydro coordination, where the operation of cascading river dams 
with pumping-storage capability must be combined with 
decisions on the available wind power generation, depending on 
tariffs and market prices. One shows that an EPSO running of a 
reduced space generated by an autoencoder with solutions 
evaluated in a reconstructed space runs many times faster to 
obtain the same results as an EPSO running in the original 
problem space. 

Index Terms — Wind power, wind-hydro coordination, neural 
networks, autoencoders 

I.  INTRODUCTION 
ETAHEURISTICS such as evolutionary or particle 
swarm algorithms have proven to be flexible in 

representing realistic features of real world problems and 
became therefore a valuable tool in discovering optimising 
solutions in many problems. However, the suffer from some 
drawbacks namely being demanding in terms of computing 
effort, especially if one is dealing with large scale problems, 
which is the case in so many areas in Power Systems. The 
difficulty of dealing with large scale problems using meta-
heuristics lies not only in computation time but also in some 
difficulty in converging to an optimal solution. Both these 
factors (need to an early stopping and difficulty in converging) 
contribute to originate a performance of metaheuristics below 
what would be desirable in practice. 

A typical large scale problem may be wind-hydro 
coordination, which becomes relevant with the emerging 
importance of wind generation in the generation portfolio of 
many countries, namely in Europe. To assess this importance, 
notice that in Iberia (joining together Portugal and Spain) a 
total of over 25000 MW of installed capacity in wind 
generation is foreseen for 2011, while the joint peak power in 
Portugal and Spain, was about 54000 MW in December 2007. 

                                                 
   

V. Miranda is with INESC Porto and also with FEUP, Faculty of 
Engineering of the University of Porto, Portugal (email: 
vmiranda@inescporto.pt). 

L. Costa is with INESC Porto and also with FEUP, Faculty of Engineering 
of the University of Porto, Portugal (email: lcosta@inescporto.pt). 

Wind energy value is greatly enhanced if combined with 
pumped storage so that energy may be delivered to the market 
during hours of high price but the decision to store must be 
weighed against the price of selling directly at the moment it is 
produced in the wind parks. This problem has obvious 
similarities with hydro-thermal coordination in the presence of 
pumping storage facilities and is represented by a complex 
time dependent formulation if cascading river dams are 
present.  

In hydro-thermal coordination, several techniques were 
used such as Lagrangian relaxation [1], Stochastic Dynamic 
Programing [2] or Dual Dynamic Programming [3]. Models 
with Genetic Algorithms and Evolutionary Programming have 
also been proposed [4]. Models for wind-hydro coordination 
have also been proposed [5], [6][7]. In this paper, we will aply 
to the numerical examples an EPSO (Evolutionary Particle 
Swarm Optimization) algorithm [8] to test problems emulating 
the wind-hydro coordination context, built with enough 
complexity to test the optimization techniques under 
judgment. 

A medium term operation planning or the water resources 
requires an evaluation of the operation for a period of the 
order of magnitude of 1 year and estimates of water and wind 
availability, with the division of the planning period in sub-
periods corresponding to different months and different load 
levels with different estimated energy costs. The dimension of 
the problem may be very large. 

Feature reduction and feature selection techniques have 
been used to reduce the number of variables of a problem to a 
set of meaningful ones. One popular technique is Principal 
Component Analysis (PCA) [8]. This technique projects the 
data into a linear subspace with minimum information loss, by 
multiplying the data by the eigenvectors of the sample 
covariance matrix. A point is then represented by its 
coordinates along the directions of greatest variance in the 
data set. 

However, when one is optimizing and one needs to 
evaluate solutions during the process, a feature reduction or 
selection process is not applicable because some or all variable 
values of the original space would be unknown and therefore 
the actual value of the objective function could not be 
calculated. 

This paper presents an original idea of using an 
autoencoder neural network to generate a pair consisting of a 
function 
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dimension m into a space of dimension n (with n < m) and to 
reconstruct the original variables. The optimization procedure 
may evolve in the reduced space but objective function 
evaluation is performed in the original space thanks to the 
inverse decoding function 1f − . This reduction of the 
dimension of the search space has a notorious beneficial effect 
in the performance of the optimization algorithm. The function 
f  acts as an intelligent encoder of the chromosomes 

organized in the original space: the chromosomes used in the 
optimization technique are no longer designed by the user but 
“engineered” by an intelligent process to better suit the 
optimization process. 

II.  AUTOENCODERS 
It is a known mathematical property of real valued spaces 

that it is possible to define functions that establish a one-to-
one mapping between points of a space of dimension m and a 
space of dimension n (with n < m without loss of generality). 
The theorems supporting this assertion, however, do not 
indicate how to construct such functions. 

An approximation may however be achievable through the 
use of a space reduction technique known as autoencoders, 
which are feedforward neural networks that are trained to 
reproduce the input space S in the output. If an inner layer has 
a reduced number of neurons n compared to the set of m 
inputs/outputs, this layer will effectively be encoding variables 
from S into a smaller dimension space S’ (see Fig. 1). 

 

 
 

Fig. 1. An autoencoder neural network, with a bottleneck inner layer input and 
output layers of the same dimension and trained to reproduce the input 
variables in the output. In the inner layer one has a compressed set of values 
that encode, in a reduced dimension space S’, the values in S. 
 

This technique has been proposed in the past [10][11] with 
the purpose of using the reduced encoded values in S’ to 
represent images in a compressed way, so that this 
representation would be subject then to distinct processing 
techniques such as identification and pattern recognition. For 
instance, face images could be identified and clustered 
according to sex, distinguished from non faces, etc [12]. 

The first half of the neural network approximates the 
function 

It has been found that it was much more difficult to 
optimize the weights in autoencoders with non-linear 
activation functions and multiple layers than with a single 
hidden layer and recent efforts were concentrated in devising 
schemes to achieve a more efficient training [13]. 

f  that maps the input space to the space of 
compressed encoding S’ while the second half approximates 
the inverse function 1f −

i

. The quality of this encoding and 
decoding process depends on the quality of the training. 

III.  EPSO 
EPSO – Evolutionary Particle Swarm Optimization, is a 

hybrid in concepts of Evolutionary Algorithms and Particle 
Swarm Optimization, first proposed in [8] and with an 
improved version in [14[15]. It is an Evolutionary Algorithm 
with an adaptive recombination operator inspired on the 
“movement rule” of PSO (Particle Swarm Optimization). 

The movement rule of PSO generates a new individual as a 
weighted combination of parents, which are: a given 
individual in the population, the best ancestor of this 
individual and the best ancestor of the present generation. This 
may be seen as a form of intermediary recombination. In this 
type of recombination in evolutionary algorithms, a new 
individual is formed from a weighted mix of ancestors, and 
this weighted mix may vary in each space dimension. The 
mutation operator is only applied to the weights. 

The recombination rule for EPSO is the following: given a 
particle X , a new particle results from new
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where the symbol * indicates that these parameters will 
undergo evolution under a mutation process, and 

bi – best point found by the line of ancestors of individual i 
up to the current generation 
bg – best overall point found by the swarm of particle
 in their past life up to the current generation 

 - particle in the neighborhood of bg. 

 – location of particle i at generation k 
−= −V X X – “velocity” of Xi in generation k  

wi1 – weight of the inertia term (a new particle is created in 
the same direction as its previous couple of ancestors) 
wi2 – weight of the memory term (the new particle is 
attracted to the best position occupied by its ancestors) 
wi3 – weight of the cooperation or information exchange 
term (the new particle is attracted to the overall best-so-far 
found by the swarm). 
wi4 − weight affecting dispersion around the best-so-far 
C − a diagonal matrix with each element in the main 
diagonal being a binary variable equal to 1 with a given 
communication probability p and 0 with probability (1-p); 
in basic models, p = 1 but in advanced models p must be 
chosen from experiments and values of 0.7 < p < 0.8 have 
been shown to be optimal in many problems [14], although 
highly complex problems seem to require a very low non-
zero value such as p < 0.2. 
EPSO has been successful in a number of Power System 

applications [16][17]. 
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IV.  OPTIMIZING IN A REDUCED SPACE 
The original idea reported in this paper can be summarized 

in the following lines: 

S’ 

S 

S
o First, launch an EPSO with individuals (particles) 

represented in S and will store the solutions that this 
search will discover, for a given number of iterations, in 
order to build up a training and a test set and with 
sampling hopefully more dense in preferable regions of 
space. 

o Use an autoencoder neural network to generate a 
reduced dimension search space S’ and a half-network 
decoder approximating 1f − , regenerating from each 
individual in space S’ the corresponding individual in 
the original variable space S. 

o Then launch an EPSO with individuals (particles) 
represented in S’ and the movement rule will be applied 
in space S’. 

o The evaluation of each new particle will be performed 
by decoding it (passing it through the 1f −  half-
network) and calculating an exact objective function 
value from the real variables produced in S. 

o Based on this evaluation, selection will act on particles 
in space S’. 

o When the process has reached an optimized value with 
particles in S’, switch back to space S and continue with 
an EPSO there to further optimize the problem. 

This process is illustrated in Fig. 2. 
This process of optimization through Multiple Input 

Reduction by Adopting Networks Designed as Autoencoders 
will be called, with forgivable lack of modesty, the miranda 
method. 

The success of this idea depends of the gain in efficiency 
that one obtains from having the particles evolving in a space 
of reduced dimension. A few additional comments must be 
made. 

First, it is true that the half-networks emulating f  and 
1f −  only generate approximations to these functions. 

However, this is not important in the light that each point in S’ 
is associated with a real solution in S and it is valued exactly 
(see Fig. 2). 

Second, because the autoencoder is just an approximation 
and not a representation of the exact mappings S↔S’, some 
information will eventually be lost. It is possible then that the 
exact optimum of the original problem may not be found in S’ 
– but if the approximation is good enough, a near optimal 
solution or, at least, the location of the optimum will be found 
and an efficient post-optimization search may be launched, if 
necessary back in space S. 

Third, the advantage of miranda will only be evident if the 
task of training the autoencoder becomes much smaller than 
the additional iterations needed by an algorithm searching in 
the original space S. 

Notice that the training and test sets used to generate the 
autoencoder neural network are not obtained through random 
sampling. 

 
 

Fig. 2. Particles evolve in the reduced space S’ but are decoded and evaluated 
in the original space S, influencing their selection in S’. 

 
 
In fact, because the sampling is conducted using an 

evolutionary optimizing method, it becomes very likely that 
one will have a denser representation of the solution space in 
regions close to the optimum, which is a very desirable trait. 

A partial answer to these points is given in the following 
section, where a complex problem of wind-hydro coordination 
that has been designed to serve as a test to the autoencoder 
hypothesis, illustrates clearly the advantages of the scheme. 

V.  WIND-HYDRO COORDINATION IN PLANNING 

A.  General description of the problem 
An experimental confirmation of the potential of the 

method described above is given in this section, where a 
complex problem of wind-hydro coordination for medium 
term operation planning, designed to serve as a test to the 
autoencoder hypothesis, illustrates clearly the advantages of 
the scheme. This wind-hydro coordination planning problem 
is composed of an independent energy producer that owns a 
number of cascading hydro power plants, and also wind power 
plants that are treated as a single source (energy supplied 
through the transmission grid).  

Load forecasts are admitted available, dividing each month 
of the planning period in peak and off-peak time steps. Wind 
and water inflow forecasts will be admitted to be available for 
the whole period of planning also. These forecasts are 
interpreted in terms of energy available for each time step.  

To take in account the variability in wind, the data 
preparation process builds a set of wind power availability 
series derived from a set of historical wind series, 
representative of the wind behaviour in the region of interest. 
Water inflow variability is also treated by considering a set of 
historical water inflow series. This allows one to sample wind 
and water series and organize a Monte Carlo process that will 
estimate not only the expected value of the value of wind-
hydro coordination but also its variance, which is an important 
indicator for risk.. 

  Because the purpose of this paper is to demonstrate the 
potential and usefulness of the new technique, one will not 
devote much time to analyse the effects of uncertainties and 
concentrate on the optimization procedure instead. 

−1f
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Fig. 3. Hydro power system scheme for the base case and extended case with 
cascading reservoirs marked with numbers. 

 
Numerical results supporting the new method proposed will 

be presented for two cases of different dimensions, to illustrate 
the impact of miranda with problem size growth . The first 
case, with 8 reservoirs, has a river system presented in Fig. 3, 
where the cascading reservoirs are displayed, and has been 
built from [4]. This case will be called base case and will be 
used to test the methodologies proposed. The second case, 
with 12 reservoirs, will called extended case and will be used 
to test the robustness of the techniques in a larger problem 
than the base case. All reservoirs are admitted to be equipped 
with pumps allowing a certain amount of water to be moved 
upstream if convenient.  

The objective in both cases is to derive an operation plan 
that maximizes the profit obtained with the operation of the 
system throughout T time periods with different buying and 
selling energy prices, covering 1 year of operation. The 
operation plan will determine: 

o Quantity of water to be turbined or pumped for each 
hydro power plant in each period of time and energy 
sold or used; 

o Quantity of wind energy to be used for water pumping 
and the quantity of wind energy to be sold to the electric 
power system in each period. 

o Detailed information about the amount of water storage 
in each reservoir and water storage capacity available 
for each period of time 

The T time periods are divided in T/2 peak periods and T/2 
off-peak periods. The base case has a horizon of 6 months 
(T=12) and the extended case of 12 months (T = 24). Six 
energy prices are defined for each period, also admitting 
average price forecasting based on market history: 

o Hydroelectric energy selling price at peak and off-peak 
periods; 

o Hydroelectric pumping price at peak and off-peak 
periods; 

o Wind energy selling price at peak and off-peak periods. 
The variables of this problem are defined in terms of water 

movement for each reservoir in each period. A positive value 

will indicate turbining while a negative value will indicate 
pumping in this period. Ecological spills or evaporation are 
not considered in this example but present no difficulty to the 
model. The models for the hydro power stations assume 
linearity with water flows in this numerical example, meaning 
that head influence in efficiency is neglected and reservoirs 
are assumed as being of high head, compared with the 
variation associated with reservoir depletion. This influence 
can also be easily incorporated in the model.  
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B.  The mathematical model 
The electric energy of hydro origin H(t) generated is 

described by 

( ) ( ) ( )
N

n n n n n n t
n 1

 H t K h1 x h2 q z T
=

⎡ ⎤− + Δ⎣ ⎦∑  (4) =

where: 
Kn– Constant that includes the generator/pump efficiency, 

gravity acceleration, water density and unity conversion 
factors; 

xn – Volume of water available in reservoir n, period t; 
qn – Volume of water turbine or pumped by the hydro 

power plant n in period t; 
zn – Volume of water spilled in reservoir n in period t; 
h1n(t) – Upstream water difference of level related to the 

sea level, in the reservoir n in period t; 
h2n(t) – Downstream water difference of level related to the 

sea level, in the reservoir n in period t; 
ΔTt – duration of time interval t. 
Constant Kn takes different values, one for pumping mode 

and a different one for the generation mode, representing the 
different efficiencies involved. 

The available water volume for each reservoir is calculated 
for each period considering the variables associated to the 
reservoir, such as the natural affluences, the volume of water 
pumped or used in generation, the volume of water spilled and 
finally the already existing water volume, all of them in the 
previous period of time, and also considering the variables 
associated to the operation of the upstream reservoirs such as 
the quantity of water that was used for generation and now 
haves to be accommodated in the downstream reservoirs and 
also the water volume spilled from the upstream reservoirs. So 
in the wind-hydro coordination model, the procedure above is 
mathematically represented as dictated in equation (5): 

( ) ( ) ( ) ( ) ( ) ( ) ( )
n

n n n k k n n
k

x t 1 x t y t q t z t q t z t
∈Ω

+ = + + + − −⎡ ⎤⎣ ⎦∑  (5) 

where: 
yn(t) – Natural river inflow for reservoir n in period t; 
Ωn(t) – Set of all hydro reservoirs upstream of reservoir n. 
Constraints reflect physical limitations such as the 

maximum and minimum quantity of water that can be pumped 
or turbined to or from a reservoir depending on the existing 
water volume in the reservoir and depending also on the 
operation of all other reservoirs, and reflecting some technical 
limitations such as the minimum ecological volume and the 
available wind energy. These are classical constraints and are 
represented by 
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     (6) n,min nx x n,max( t ) x≤ ≤

  (7) n,min n n,maxq q ( t ) q≤ ≤
where: 

xn,min – minimum available water volume, corresponding to 
the ecological volume; 

xn,max – Maximum available water volume in the hydro 
reservoir n, reservoir maximum capacity; 

qn,min – Maximum available water volume that can be 
pumped into the reservoir n; 

qn,max – Maximum available water volume in the hydro 
reservoir n that can be used for energy generation; 

The energy generated at wind farms per period is estimated 
as E(t) – this is taken as data in the following. Its value per 
period is derived from the wind series and each wind farm 
production characteristic, which can be modeled separately 
from the optimization procedure. In fact, as there are no 
“reservoirs for wind”, the generation forecast is a direct 
function of the wind forecast. One has 
 E(t) = EV(t) + EB(t) (8)  
where: 

EV(t) – Wind energy sold to the grid in period t; 
EB(t) – Wind energy used to pump water into the water 

reservoirs in period t. 
The fitness function, or in other words the operation profit 

function for one scenario, is given by 

t

L( t )φ = ∑ , with 

H

B V E

L( t ) Prod( t ) Sell _ pr ( t ) Pump( t ) Buy _ pr( t )
          E ( t ) Buy _ pr( t ) E (T ) Sell _ pr ( t )

= × − ×
+ × + ×

+
 

where: 
Prod(t) – Positive qn terms sum in period t; 
Pump(t) – Negative qn  terms sum in period t; 
Buy_pr(t) – Energy buying price for period t; 
Sell_prH(t) – Hydroelectric energy selling price for period t; 
Sell_prE(t)  – Wind energy selling price for period t; 
The expected economic value Φ over a set of M scenarios 

is given by 

 
1

1 M

k
kM

Φ
=

= ∑φ  (9) 

C.  Chromosomes and EPSO parameters 
A chromosome representing an individual or a solution in 

the original space S has the structure illustrated in Fig. 4. In 
this figure only the object parameters (or natural variables of 
the problem) are identified and the strategic parameters 
(weights) should be added to obtain the complete 
representation. 

 
 

 
 
Fig. 4. Structure of a chromosome with its object parameters 

In this figure, T1 to Tn represent the time periods, q1 to qn 
he turbined (or pumped) water per each hydro 

power station, P is the wind energy used to pump water 
upstream and S is the wind energy directly sold to the grid. 

represent t

When using EPSO a population of 20 was adopted in all 
experiments, all weights were randomly initialized in the 
interval ]0,1], the stopping criterion was a fixed number of 
fitness function evaluations (400000), the learning rate was set 
to τ = 0.6 and the communication probability was set to 0.7. 
Constraints were dealt with a penalty technique. 

D.  Autoencoder structure 
The autoencoders used were three-layer feed-forward 

neural networsk with the middle layer of half the size of the 
outer (input and output) layers. The first layer neurons had 
linear activation functions and the other neurons had 
symmetric sigmoid activation functions such as 

 2sx
2y 1,   1 y 1

1 e−
= − − ≤ ≤

+

1

 (10) 

where x is the sum of neuron inputs, y is the neuron output 
and s a parameter regulating the shape of the sigmoid. 

The input and output layers have the dimension of S, equal 
to the number of variables of the problem. In the base case S = 
120 and S’ = 60; in the extended case S = 336 and S’ = 168. 

E.  Dealing with constraints in S’ 
One must realize that the meaning of the variables in space 

S’ (the output of the neurons in the middle layer) is virtually 
unknown, but constraints associated with variable limits must 
be enforced in this space. The strategy adopted has been to 
observe in the autoencoder training set the values assumed by 
the variables in S’. From this observation, limits are defined 
for these variables taking in account the minimum and 
maximum values registered in the training set. All other 
constraints in the problem are enforced by applying penalties 
(negative) to the fitness function, calculated after the 
application of the autoencoder half representing − . f

VI.  OPTIMIZING ONE SCENARIO 
This section presents the results of the optimization in one 

scenario taking one wind series and one water inflow series as 
well as one price series. The following experiments were 
conducted, all with a stopping criterion of a maximum of 
400,000 fitness function evaluations: 

A. Run an EPSO in full space dimension S for full 
optimization to the limit of computing effort set. 

B. Take a set of the solutions discovered by the previous 
process to train the autoencoder in offline mode; then, 
run an EPSO in a reduced space S’ until the stopping 
criterion is met 

C. Take a set of the solutions discovered by the previous 
process to train the autoencoder in offline mode; then, 
run an EPSO in a reduced space S’ for a given number 
of iterations; finally, switch to space S and continue 
the optimization until the stopping criterion is met. Hydro power plants Wind farms

D. Start an EPSO in Space S for a number of iterations; 
with a subset of the solutions discovered, train an 
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autoencoder in online mode; then, run an EPSO in a 
reduced space S’ for a given number of iterations; 
finally, switch to space S and continue the optimization 
until the stopping criterion is met. 

Experiment A defines the benchmark. Experiment B is 
meant to demonstrate that the auto-encoder trained with a set 
of points in the region of interest (the neighborhood of the 
optimum, discovered by in Experiment A) does accelerate the 
EPSO algorithm by defining a search space of reduced 
dimension. The third experiment shows that post-optimization 
is possible after the action of the auto-encoder. Experiment D 
demonstrates that even a preliminary sampling allows the 
autoencoder, trained in online model, to accelerate the 
optimization procedure. 

A.  Results 
All results presented in this section are average results 

obtained after running a number of times each experiment, in 
order to eliminate the effect of a random non-representative 
result. The number of fitness function evaluations is equal to 
the number of iterations times the double of number of 
particles. 

 

 
Fig. 5. Comparison of the evolution of the fitness function value in 
Experiments A and B (average of 5 runs) in the base case. 

 
Fig. 5 displays a comparison between Experiment A and B 

in the base case. Two things are of immediate perception: the 
optimization in space S’ discovers feasible solutions very 
quickly with already good values but if the optimization 
process is prolonged then eventually the EPSO running in 
space S eventually catches up and provides a better result. The 
interpretation is the following: the miranda technique 
accelerates the process thanks to a good representation of the 
solution space in the region of interest, as a consequence of 
the biases sampling obtained from the previous action of the 
EPSO run on S. However, the auto-encoding process leads to 
some loss of information (the training process is not perfect, 
there is some inevitable error) and the information on the 
exact location of the optimum may have been “erased”, 
although the region of interest has been located. 

The efficiency of the autoencoder in driving the swarm into 
the feasible region can be also appreciated in Table 1. The 
efficiency of miranda may be appreciated in Table 2, where a 
speed up of 16 times is obtained to reach the same fitness 
value with and without the autoencoder. 

TABLE 1 – NO. OF ITERATIONS NECESSARY TO DISCOVER THE FIRST FEASIBLE 
SOLUTION IN EXPERIMENTS A AND B IN THE BASE CASE 

 Iteration no. Fitness value 
Exp. A - EPSO 838 1352,03 
Exp. B – EPSO/Autoencoder 13 1570,78 

 
TABLE 2 – COMPUTING EFFORT TO REACH THE SAME FITNESS VALUE (1820) IN 

EXPERIMENTS A AND B IN THE BASE CASE 
 Iterations Fit. Evaluat. 
Exp. A - EPSO 4512 180480 
Exp. B – EPSO/Autoencoder 285 15400 

 
Experiment B also teaches that a post-optimization is 

necessary because of the loss of information in the process of 
training the autoencoder. This is the principle behind 
Experiments C and D. 

Fig. 6 displays the result of switching back to space S after 
250 iterations in the base case. The superiority of the process 
tested in Experiment C is obvious: the post-optimization is 
effective because the optimization in space S’ left the swarm 
in the region of the optimum. 

 

 
Fig. 6. Comparison of Experiments A, B and C for the base case (5 runs). 

 
 

 
Fig. 7. Comparison of Experiments A and D in the base case (5 runs). 

 
In Fig. 7 one may appreciate the performance of the 

strategy tested in Experiment D, by training the autoencoder 
with the solutions discovered by an EPSO in S during the first 
iterations. Although it takes a bit longer to reach a feasible 
solution (not found in the preliminary iterations is S) still the 
process performs much better than using only an EPSO in the 
original space S and reaches solutions of comparable quality 
with Experiment C, where the autoencoder was trained offline 
with a “better” training set. 
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Fig. 8. Comparison of Experiments A and C for the extended case (5 runs) 

 
Fig. 8 displays results for the extended case for 

Experiments A and C. The superiority of the 
EPSO/autoencoder approach is obvious. 

Tables 3 and 4 again illustrate the superiority of the new 
technique over the simple use of a meta-heuristic, which takes 
advantage of an early discovery of the feasible domain and of 
the region of interest where the optimum is located. 

 
TABLE 3 – NO. OF ITERATIONS NECESSARY TO DISCOVER THE FIRST FEASIBLE 

SOLUTION IN EXPERIMENTS A AND B IN THE EXTENDED CASE 
 Iteration no. Fitness value 
A - EPSO 2389 4871,15 
C – EPSO/Offline Autoencod. 26 5106,21 

 
TABLE 4 – COMPUTING EFFORT TO REACH THE SAME FINAL FITNESS VALUE IN 

EXPERIMENTS A AND B IN THE BASE CASE 
 Iteration no. Fit. Evaluat. 
A - EPSO 20000 800000 
C – EPSO/Offline Autoencod. 3379 135180 

 
In Fig. 9, finally, one may verify that the online training of 

the autoencoder (Experiment D) continues to reveal 
superiority relative to the simple adoption of a meta-heuristic 
in the original space S. Naturally, the discovery of feasible 
solutions is delayed when compared with Experiment C but 
there is still a remarkable gain. 

It must be mentioned that although training the autoencoder 
consumed some computation time that must be added to the 
computational effort of the Experiment D, in all cases it 
resulted nevertheless in a net gain, whose relevance depends 
and grows with the complexity of the fitness function. 

 
 

 
Fig. 9. Comparison of Experiments A and D for the extended case (5 runs). 

VII.  VALUE OF WIND-HYDRO COORDINATION 
The application of miranda to the optimization of wind-

hydro coordination, with the speed up in calculations 
achieved, allows the assembling of a Monte Carlo process to 
reach a probabilistic evaluation of the value of wind-hydro 
coordination, when compared with an independent operation 
of the hydro and the wind generation.  

The Monte Carlo process is organized by sampling series 
of wind, water inflows and energy prices. In order to compare 
the cases of coordinated and uncoordinated operation of wind 
and hydro generation, calculations have also been made for 
the hydro system placing an artificial wind series at constant 
zero value (zero wind scenario) and adding the cost of the full 
sale of wind generation to the grid at the hours of generation. 

Table 5 presents the average result for 20 wind series 
scenarios of the comparison for the extended case of a strategy 
of wind-hydro coordination with the sum of independent wind 
and hydro strategies with no coordination − meaning that wind 
energy is sold to the grid only and that the hydro power 
stations owner uses pumping when useful by buying from the 
grid. One admits in these trials that one has pumping in all 
hydro power stations in both cases. 

 
TABLE 5 – AVERAGE OPERATION PLAN PROFIT VALUES FOR 20 DIFFERENT 

WIND SCENARIOS  
 Operation plan Profit 
Without W-H coordination 5653,8 
With W-H coordination 7423,23 
 

This result represents the expected 1769 units per year 
value of wind-hydro coordination. To assess the risk of a 
coordination strategy, one displays in Fig. 10 the histogram of 
the profit form a coordination strategy, as a result of the 
scenario simulation. Admitting that all the scenarios (wind 
series) have similar probability, one may therefore calculate a 
risk index associated to an expected gain from a coordination 
strategy over a non-coordinated strategy. For instance, there is 
a risk of 15% of not benefiting more than 1478 units in one 
year and the probability of gaining in one year more than 2093 
units is estimated at 10%. 

The marginal value of pumping at a given power station 
can be also evaluated. Table 6 compares the average results in 
20 wind series scenarios from a wind-hydro coordination 
strategy, when having or not pumping ability in power station 
6in the extended case. 

 

 
Fig. 10. Distribution of the yearly results for a wind-hydro coordination 

strategy for 20 different wind series scenarios. 
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TABLE 6 – COORDINATION PROFIT FOR BOTH WITH AND WITHOUT PUMPING 
ABILITY SCENARIOS  

 Coordination plan Profit 
With pumping ability 7520,96 
Without pumping ability 6978,7 

 
The yearly additional value of having pumping in a 

particular power station may then serve to justify a possible 
investment in power station 6, in a wind-hydro coordination 
strategy. These calculations are difficult and time consuming 
and this underlines the usefulness of techniques that speed up 
simulations. The adoption of autoencoders, by accelerating the 
algorithms considerably, makes these calculations feasible.  

VIII.  CONCLUSIONS 
Meta-heuristics or population-based methods are known to 

lose efficiency in large scale problems: the convergence 
becomes slow when the number of variables is large and the 
computing effort to reach the optimum becomes heavy. One of 
such problems is the wind-hydro coordination in medium term 
operation planning, where several elements of complexity are 
present, namely the spatial and temporal dependence 
introduced by the cascading hydro power stations and the need 
to represent a large set of time steps. This paper presents a 
novel method to evaluate the added value of a wind-hydro 
coordination strategy when compared with an independent 
operation of hydro and wind generation systems. Wind-hydro 
coordination leads to the concept of a market agent (or a 
partnership of agents) operating it may extract added value 
from the renewable resources. This analysis must necessarily 
be probabilistic, given the uncertainties associated to the 
renewable energies availability and also to the energy prices, 
and requires a considerable number of simulations of a 
diversity of scenarios. Therefore, any technique that speeds up 
computations becomes extremely valuable. 

This is the case with the Multiple Input Reduction by 
Adopting Networks Designed as Autoencoders approach, or 
miranda, proposed in this paper as a very novel process that 
achieves problem optimization by organizing meta-heuristic 
searches in an equivalent reduced dimension search space. The 
cleverness of the method lies in the fact that the evolutionary 
process acts upon individuals represented by chromosomes 
that are not designed ad-hoc by a human but instead result 
from an intelligent coding achieved by a first half of an 
autoencoder, while the fitness function is evaluated by 
decoding the intelligent chromosomes with the second half of 
the autoencoder. Because the clever chromosomes are 
represented in a space of reduced dimension, the optimization 
process becomes much more efficient. 

The application of this original technique to two realistic 
wind-hydro coordination problems is made feasible by the 
speed up achieved with thenovel technique. The results 
presented fully demonstrate the interest of the technique, 
which is of general application. 
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