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Abstract

EPSO — Evolutionary Particle Swarm Optimization [1] algorithms are evolutionary methods
that borrow the movement rules from Particle Swarm Optimization (PSO) methods and use
it as a recombination operator that evolves under pressure of selection. This hybrid
approach builds an algorithm that, when applied to complex problems in power systems, has
already proven to be more efficient, accurate and robust than classical evolutionary
methods or classical PSO. Even though EPSO algorithm has already proven its efficiency on
the practical problems, winning the competition with other metaheuristic methods, it can
still be improved and made even more efficient.

Investigating the algorithm solely by extensive empirical testing could lead to improvements
of its performance on particular problem sets. However, without some theoretical
understanding of the algorithm, a general improvement of algorithm’s performance is rarely
possible.

As the No Free Lunch theorem [2] by Wolpert and Macready states, there is no such
algorithm that is generally, on average, superior to any other competitor, but purely testing
and demonstrating algorithm’s superiority on a given problem does not provide
understanding on why the algorithm actually works and how to improve the algorithm’s
performance. The usefulness of theory in the domain of evolutionary computation is often
guestioned, but “theory” should be understood not only as collection of mathematical
theorems and proofs, instead it includes a collection of experience or knowledge useful for
making predictions of the evolutionary system performance. The theoretical approach
should clearly define the domain of applicability of the algorithm, and if possible, present
the convergence proofs and efficiency results. Theoretic investigation of evolutionary
methods is, however, difficult and, in strict mathematic terms, often impossible with
complicated real-life problems. In other words, convergence can often be strictly
mathematically proven only on very simple or special (artificial) cases. Even with these
limitations taken into account, theoretical investigation of evolutionary algorithms has
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Evolutionary Computation

Brief history of evolutionary computation

Even though the exact term evolutionary computation hasn’t been coined until the 1990s,
the basic ideas of evolutionary computation date to the 1950s. The first works related to
using an evolutionary process for computer problem solving deals with the use of an
evolutionary algorithm for automatic programming — finding a program that calculates a
given input-output function.

By the mid-1960s, visionary researchers have developed “classic” methods of evolutionary
computation and the bases for today’s three main forms of evolutionary algorithms have
been clearly established. The roots of evolution strategies (ES) have been established in
Technical University of Berlin by three students, P. Bienert, I. Rechenberg and H.P. Schwefel.
At the same time, in San Diego, California, Lawrence Fogel was dealing with the first
instances of evolutionary programming (EP). At the University of Michigan in Ann Arbor, the
works of John Holland led to development of genetic algorithms (GA).

The basic idea behind evolutionary computation was to employ natural evolution as a
powerful problem-solving paradigm. All evolutionary algorithms utilize the collective
learning process of a population of individuals. Usually, each individual represents a search
point in the space of potential solutions. Put simply, evolutionary computation methods
evolve solutions to problems and try to reach the optimum solution. All evolutionary
methods rely on fitness function — a specific function that provides a measure of individual’s
quality, and thereby provides the ranking of solutions. Fitness function is an essential
ingredient of every evolutionary algorithm, as a process for ranking the individuals and
assigning the measure of quality to each individual.

While GA, ES and EP all share the same algorithmic approach where individuals are not
confronted with one another but measured against an external common selection function,
genetic algorithms differ significantly from the other two approaches. The genetic
algorithms focus on genetic material — genotype, not phenotype — phenotypic (outer, visible)
characteristics of the individuals. This means that the operators in genetic algorithm rely on
discrete genetic representation of individuals. They deal with alternating and exchanging of
genes between the individuals. Finding the optimum solution to a particular problem is
‘translated’ into a problem in finding the genes that build the optimal individual [1], but each
individual is evaluated on the base of its phenotypic characteristics.

The ES and EP approach is different. There is no real gene level in evolutionary strategies and
evolutionary programming; they do not separate the worlds where a variant of the solution
is generated from the one where the selection acts, like in genetic algorithms. Moreover, ES
and EP aren’t two distant paradigms; instead they could be viewed as variations on a same
theme. Actually, it’s the geographical independence in development of EP and ES that led to
creation of subsequent schools of followers. After years of research and applications in both
directions, they can be attributed with the same generic name like phenotypic methods,
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attributing their dependence on phenotypic characteristics of the individuals in the
population.

After the 1960s, over the following 25 vyears all these branches developed quite
independently of each other. The international workshop entitled Parallel Problem Solving
from Nature, held in Dortmund in 1991, presented an organized effort for providing a forum
of interaction between these research communities. Subsequently, in 1993, the term
evolutionary computation was coined as a general term covering all major forms of
evolutionary computation. Since EPSO has more in common with the ES and EP approach
than with GA approach, ES/EP theory will be presented.

Evolution Strategies

Introduction

In 1965, three students of Technical University of Berlin, P. Bienert, I. Rechenberg and H.P.
Schwefel did not aim at devising new kind of optimization procedure. Working at Institute of
Fluid Mechanics, they wanted to construct a research robot that should perform a series of
experiments on a flexible, slender three-dimensional body in a wind tunnel, in order to
minimize its drag. However, when tested on joint plate, the two-dimensional demonstration
facility, the classical methods, optimizing one variable at a time or using gradient techniques,
failed and became prematurely stuck in local optimum. Rechenberg hit the idea to use dice
for random decisions, and June 12th, 1964 was the birth date of the first version of an
evolutionary strategy, later called the (1+1) ES. The first evolutionary strategy had discrete
binomially distributed mutations centered at the ancestor’s position and only one parent
and one descendant per generation.

The ES was tested on a mechanical calculating machine by Schwefel before it was used to
optimize the joint plate. Later, Bienert constructed a kind o robot that could perform the
optimizing actions and decisions automatically.

First computer experiments and analytical investigations were performed by Schwefel in
1965, and the first problems with the new method indicated that the strategy can become
stuck prematurely, at solutions not even locally optimal. This led to using normally instead of
binomially distributed mutations, and also to later theoretical investigations of ES. First
Rechenberg, and then Schwefel analyzed and improved their ES. Rechenberg’s work in 1971
introduced convergence rate theory for optimizing a function with n>> 1variables. This work
proves that the convergence velocity (distance traveled into useful direction per algorithm’s
iteration) is inversely proportional to number of variables and proportional to orographic
measure of isohypses’ curvedness of objective function. Moreover, he has proven that the
linear convergence order is achievable if the mutation strength in the algorithm is adjusted
to proper order of magnitude. Finally, his work shows that the optimal mutation strength
corresponds to a certain success probability independent of dimension of the search space.
The optimal success probability provided on two model functions was in range of 1/5.

Rechenberg’s work also introduced the first type of multimembered ES, the (,u +1) ES
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with 1 parents, two of which are chosen to produce a descendant. The selection is then the
extinction of the worst individual.

H.P. Schwefel in 1974 introduced two main forms of multimembered evolution strategies:
o (u+A)-ES, where there is A>1 descendants, and to keep the population size

constant, in each generation A worst individuals are discarded
° (,u, /’L) -ES, in which selection takes place among the A offspring only, and the parents

are forgotten. Obviously, in this case 4> ¢ must hold.

Like any classical method, the performance of evolution strategies depends on the
adjustment of internal parameters. The multimembered (z,4) and (u+A) evolution

strategies became more popular due to their capability of self-adaptation, they arose from
otherwise ineffective incorporation of mutatable mutation parameters. Schwefel’s later
research work continued in the direction of theoretical investigation of ES. In the 1980s, the
first notions of self-adaptation by collective learning came up, but the theoretical
background was formed in late 1990s, in the works of H.G. Beyer and books by Schwefel,
Rechenberg and Back [4],[5],[6],[7],[8]. Many other results have been produced in the
German ES community, consisting of the group at Berlin (Rechenberg, from 1972) and the
group in Dortmund (Schwefel, from 1985). Even though there is still much work to be done
in order to establish on solid grounds a general theory of generalized evolution strategies,
the significant theoretical results available until today will be explained in the following
sections.

ES algorithm fundamentals

This section presents the ingredients and the notation for contemporary ES, capable of self
adaptation. The usual goal of an evolution strategy is to optimize given objective (quality)
function F(y)with respect to a set of decision variables or control parameters

y :(yl, yz,...) called object parameters. Search space can be any set of data structures of

finite but not necessarily fixed length. Examples include real-valued N-dimensional search
space, integer search space, binary search space, space of permutations etc. Evolution
strategies operate on populations B of individuals « ; an individual &, not only comprises the

specific vector of object parameters y, and its objective function value F, =F(y, ), but also
a set of endogenous strategy parameterss, . The endogenous strategy parameters regulate

the ES and can evolve during evolution process. Also they are a prerequisite for a self-
adaptive ES.
Though specialized versions of ES do exist, in theoretical research usually focuses on a

canonical set of ES features. In the beginning there were two different forms of ES: (,u + /1)
and (y,l)-ES, differing in the principle of selection, as noted in the previous chapter. In

1995 [4], a broader definition of (u,k, 4, p) was proposed.
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e 1 -number of parents in a generation

e x - number of generations (reproduction cycles) that an individual can survive

e A-number of offspring created in one generation

e p-number of parents (direct ancestors) for each individual
Within one ES evolution step, A offspring individuals are generated from the set of x parent
individuals. Each new individual is generated from p parents involved in procreation. These
p parents recombine to create one new individual. The special case p =1 means there is no
recombination; instead a new individual is a clone of his only parent. Each new individual is
created by randomly choosing p parents from the parent pool, and then the new individual
is built by recombination. After that, the new individual’s strategy parameters and object
parameters are mutated. The process is repeated Atimes, then selection takes place.
Depending on whether or not parents can survive, i best individuals are chosen either from
the offspring exclusively (the comma selection) or from both parents and the offspring (the
plus selection). The remaining parameter limits the parents’ survival period to
Kk generations, i.e. the individual can survive only up to x generations. Finally, after each
generation cycle is finished, a termination condition is checked. Termination condition can
be based on resource criteria (given number of generation or CPU time) or algorithm
convergence criteria (either in the space of fitness values, object parameters or strategy
parameters).
The (,u,lc,/i,p)—notation doesn’t include all the possible parameters — contemporary ES

have more parameters, for instance: P- the starting population, mutation operator, mutation
probability, recombination operator, recombination probability, selection operator and
others, as well, some of them associated with chosen operators.

Favorable properties of ES operators

Each evolutionary algorithm needs a goal oriented selection operator, in order to guide the
search into promising regions of the object parameter space. Selection is an antagonist of
the variation operators, mutation and recombination, whose primary role is exploration of
the search space. Selection creates a new parental population by a process which aims to
drive fitter individuals into the selection pool for the next algorithm generation. However,
obviously, solely these properties of selection operator do not guarantee algorithm’s
convergence, they are necessary but not sufficient properties of a working ES.

Mutation operator, unlike selection operator, is a variation operator in the ES. Even though
there is no established design methodology for the operator, Beyer [9] has proposed three
general guidelines that a mutation operator should obey:

e reachability — given a parental state, this ensures that any other state can be reached
within a finite number of mutation steps. This is a prerequisite for global
convergence.

e unbiasedness — while selection exploits the fitness information in order to guide
algorithm into promising regions of the search space, mutation should not introduce
any bias, and being maximally unbiased is a design criterion for variation operators. A
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maximum entropy principle follows naturally, and for real valued search spaces
R"™ Gaussian normal distribution proves to be a good choice.

e scalability — states that the mutation strength, or an average length of mutation step
should be tunable in order to adapt to properties of fitness landscape. Since the
properties of the fitness landscape are determined by objective function and the
variation operators, it can be expressed as the causality concept, presented by
Rechenberg in and formalized by Sendhoff et al in 1997 [10]. This concept states that
on average small changes in the genetic level should result on average in small
changes in the fitness values.

It must be noted that even the operators that do not comply with these rules can be
successful in a specific application.
Recombination, unlike mutation, uses information from up to o parents. Recombination

stands as a word that designates a number of distinct procedures that share the property of
building an individual departing from a set of parents. There are two classes of
recombination operators in ES — dominant recombination and intermediate recombination.
The dominant recombination coordinate-wise randomly selects elements from the parents
and copies the value of element from the parent chosen as dominant for that component. In
other words, the k-th component of the descendant is determined solely by k-th component
of the dominant parent. This scheme is also called discrete recombination or uniform
crossover. Another variant of the scheme is multipoint crossover scheme, usually used in
genetic algorithms, where one selects a number of crossover points, and offspring
successively receives a part of genetic material from parents.

The intermediate (intermediary) recombination, on the other hand, takes all o parents into
account and creates offspring as center of mass (centroid) of parent vectors.

Building block hypothesis stated by Goldberg [11] in 1989, commonly used as a supporting
theory for building recombination operators in GA community, explains the use of
recombination as an operator preserving good building blocks from the parents and
combining good properties of parents to create good offspring. While the explanation looks
intuitively appealing, finding the test function to theoretically and practically support the
hypothesis was very difficult. Over the 1990s, ES theory research instead revealed another
mechanism of recombination — the genetic repair effect [12] and corresponding genetic
repair hypothesis. The GR hypothesis stands on the opposite standpoint to BBH hypothesis —
it is not the different (i.e. desired) features that recombination operator transfers to the
offspring; instead it’s the common features, similarities from the parents. It is reasonable to
assume that corresponding components in parents that are similar to each other carry a
higher probability of being beneficial with respect to individual’s fitness. The best a variation
operator can do is to preserve these common features, since other might be irrelevant or
even harmful [13]. By conserving the beneficial parts, the recombination operator damps
the harmful effect of mutation causing the decrease in fitness. Genetic repair theory is easily
explained on real-valued search spaces, while its derivation on combinatorial search spaces
still remains a challenge.
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Theoretical performance measures: quality gain and progress rate

There is a long tradition of theoretical research in the ES community, dating back to its
beginnings in the 1960s. All theoretical results in the realm of ES have to rely upon
simplifications of the situation investigated. The most important goal of mathematical
theory in ES is predicting its dynamic behavior, mathematically describing and investigating
the ES performance in time domain. ES are Markovian processes and are governed by
Chapman-Kolmogorov equations — the generalization of Markov chains for discrete search
spaces. These equations provide a vast amount of information, and theoretical research is
more directed towards analyzing the aggregated information related to optimization
performance of ES, like:

e the dynamics of the average, best and worst fitness

e dynamics of expected distance towards the optimum

e local performance properties

e global performance properties (convergence proofs, orders of convergence, running

times and time complexities)

One of local performance properties useful in theoretical examination is called success
probability P; — it is the probability of improving an individual by mutating it. For the (1+1)
ES, this is exactly the same probability for the descendant replacing a parent.
Assume that the fitness function F(y)can be locally approximated by the local quality
function Q(X), or in other words the transition from parental state Y, at generation k to
generation k+1 by mutation x induces a fitness change expressed by local quality function.
F(yk+1)_ F(yk ) = F(yk + X) - F(yk ) = Q(X)

The performance of the ES can then be described by quality gain [7]. The quality gain is
defined as the expectation of the fitness change induced by mutation x.

(Q)=E{Q
Another way of describing ES performance is progress rate ¢. If the optimum of F(y) is

located atVy, then the progress rate is the expectation of distance traveled from generation k
to generation k+1:

o=E{9 -yl =¥ - Viul}

From the theoretical point of view, describing ES performance in object parameter space,
through progress rate, should be the preferred performance measure. Unfortunately,
determination of progress rate is difficult and tractable for simple fitness functions only. This

is one of reasons that sphere fitness function has a particular importance for investigating
the ES:

F(y)=Cly|" yeR’

All vectors lying on a particular hypersphere have the same value of sphere function, which
makes this case symmetric and dependant only on one dimension — the hypersphere radius
(or the norm of vector y). That is, the radius of the hypersphere can be used as an
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aggregated state variable, reducing an analysis of algorithm performance from N-
dimensional space to one-dimensional space.

Self-adaptation

The necessity of controlling endogenous strategy parameters became evident when running
a simple, (1+1) ES with isotropic Gaussian mutations and constant mutation strength, on a
sphere function. Even though it can be shown that (1+1) strategy is globally convergent, in
practice after a period of improvements the strategy becomes extremely slow, because the
system has lost its evolvability, due to fixed mutation strength. (1+1) case is particularly
useful since it only relies on mutation which makes it easier to understand. An intuitive
explanation how mutation strength influences performance of (1+1) ES follows from
symmetric nature of mutations and smoothness of fitness landscape. If the mutation
strength o is chosen very small, on average the success probability will be %, on average
every second mutation will “hit” inside the hypersphere, and small mutations will have a
high degree of success. However, mutation steps are scaled with mutation strength,
progress towards the optimum is also scaled witho .

o—>0:F —>%,gp—>0

The performance will therefore be rather poor. The opposite case with o very high makes
the mutations produced from parental state too large and the success probability
(probability of “hitting” inside hypersphere) will be very small.

oc—->w0:P—>0,¢p—>0

Between these two extremes there is a bandwidth of mutation strengths guaranteeing
nearly optimal performance, called evolution window by Rechenberg.

Since both performance of the ES (progress rate) and success probability depend on
mutation strength, a o -control rule can be established. For the sphere function, optimal
success probability that gives the maximum progress rate isP; ~0.27, and for other

functions it was close to 0.2. A compromise proposed by Rechenberg is the famous 1/5™
rule: in order to obtain nearly optimal local performance of (1+1) ES in real valued search
spaces, tune the mutation strength so that the measured success probability is around 1/5.
According to Rechenberg one should evaluate the achieved progress rate, and if it is larger

than 1/5, makeo =a - o, if it is smaller than 1/5, makea=%;, where a€[1,2].

This control heuristics represents the very simplest version of deterministic nonlocal
adaptation. It became important since, for some problems, it represents a locally good
approximation of given fitness landscape. For other problems, however, the good value of
progress rate depends on the topology of search space. Rechenberg’s control heuristics uses
only the global information on success probability, it is restricted to application of only one
strategy parameter, the fitness landscape also must obey certain properties and it works
only for (1+1) ES. Therefore, a more flexible and evolutionary technique for adaptation was
introduced: self-adaptation or o-SA as called by Schwefel [8]. The principal idea rests on
individual coupling of endogenous strategy parameters with the object parameters, so that
each individual has its own set of strategy parameters. The parameters undergo
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To obey scalability rule, mutation of the strategy parameters in real-valued search spaces
must be performed multiplicatively, o,,, = o, - & where §is a random number sampled from

a random generator. The expectance of £ should be close to 1 and there are several random
number distributions that have found a practical use:
e lognormal distribution, proposed by Schwefel, where mutation has the same
. . o 11 A
probability of being doubled or divided in half p, (£) = g2\ "

e &
e exponential transformation of Gauss normal distribution, & =e""®%
e symmetrical two-point distribution, 0, =0, 1+ /) if

U(0,1) <0.5and o, =J%+ﬁ) if U(0,1) >0.5 where U(0,1) is a random number

sampled from uniform distribution

These schemes, and consequently the ES performance, depend on the value of learning
parameter, t in first two cases and 8 in third case. The learning parameter conditions the
speed and accuracy of the o-SA evolution strategy. Schwefel’s theoretical results provide

that the learning parameter should be proportional to }{/ﬁ where N is the dimensionality

of the problem. Beyer [14] proposed some practical formulas for choosing the learning
parameter.

Once the initial transient phase of the algorithm is finished, optimal choice of the learning
parameter leads the algorithm towards exhibiting a linear convergence order.

To achieve acceptable progress rates, a mechanism capable of reducing fluctuations is
needed. According to genetic repair principle, recombination extracts similarities from the
individuals — this is why recombination is recommended and has positive effect in self-
adaptive ES [15], [16], [17].

Self-adaptation on the level of individuals, however, can also fail. The reason for such
failures is “opportunism” — evolution rewards short term success, and if the local progress
and global progress aren’t positively correlated, evolution might choose offspring states
leading towards local optimum. An example of approach for avoiding these premature
convergence problems is comparing partially isolated evolution processes which lead to
nested evolution strategies or meta-ES. Meta-ES, nested ES or hierarchically organized ES are

strategies described as[y’/p'+,/1'(y//1+,/1)y}—ES: there are u'parental populations of

(,u/ﬂ+, /1)-ES that run without any communication for y generations, where y is an isolation
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parameter. After y generations, “outer” ES selection determines the best u' of (,u//1+,/1)

strategies. There are several distinctive application approaches to nested ES:
e as meta-heuristic strategies for global optimization in simple search spaces, where
outer ES performs global optimization and inner ES local search
e in search spaces composed from different kinds of simple search spaces, for example
mixed-integer search spaces, neural networks design — in such application evolution
of the structure is performed by outer ES and weights are evolved by inner ES
e solely optimizing the performance of inner ES through breeding by outer ES

Another approach to self-adaptation is a class of deterministic nonlocal techniques for
adapting the mutation operators, called cumulative path-length control (Ostermeier, [18]). It
relies on evolution path — in the simplest case, vector sum v of actually realized evolution
steps over a number of last G generations. A mutation step is kept constant over G
generations, so an expected length of v can be calculated.

If the chosen mutation step is too small, then selection will prefer larger steps and actual v
will be larger than expected value. On the opposite, if the mutation steps are too large,
smaller steps will be selectively preferred and v will be smaller than the expected value.

The basic idea is reminiscent of the 1/5th rule, but there is a difference on how the nonlocal
population information is used. The 1/5" rule discards any search space information. More
advanced implementations of cumulative path-length control introduce cumulative step-size
control and adaptation of covariance matrices needed to produce correlated mutations.
After having experiments with global evolving mutation strength, and defining a global
learning factor, the next step was decoupling the mutation strengths so that distinct
variables undergo distinct evolution processes (i.e. setting n different mutation strengths for
n objective variables defining an individual).

The sphere function model might be a good local approximation for many cases, but it
assumes an isotropic topology of the search space. Some search spaces, however, are not
isotropic and allowing distinct mutation strengths allows decoupling of the mutation rate
according to distinct coordinate directions. A scheme with different mutation strengths
allows decoupling of mutation rates according to the axial directions of search space.

All of these approaches establish different mutation rates while keeping them non-
correlated. Even this is not enough for achieving effective performance in some search space
— a correlation, dependence between evolution along some direction and some other
direction should be established to assure the algorithm’s performance.

The scheme with isotropic spaces assumes that length of a vector is given by ||R|| =R'R and
decoupling of variable mutation strengths is equivalent to assuming a diagonal metrics in the
search space, i.e. ||R|| =R'DR where D is a diagonal matrix. Recognizing this, ES

incorporated correlation between mutations as strategic variables, which is equivalent to
constructing Mahalanobis metric in space, and length of a vector R is then given by

||R||= R'TR where T is a full matrix. In ES, a formal mathematical representation of the
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possible covariances of mutation distribution is adopted, with the basic concept of
introducing new strategic variable - inclination angle a.

Given an inclination angle between two coordinate directions p and q, covariance matrix
between these directions can be defined by transformation matrix

1 0
0 1
cosa; —sinaj
1 0
qu(a):
0 1
sinozj Sinozj
00 1 0
00 0 1

where only lines and columns p and q have elements distinct from 0 or 1. The product of all
Tpq Matrices gives the covariance matrix C.

Without covariance matrix, adding a mutation to an individual in real-valued search space
means adding a random vector with non-correlated components. Covariance matrix
multiplies that vector and gives a random vector with normally distributed and correlated
components. The strategic variables that establish these correlations are the inclination
angles a. Setting all of these to zero makes the covariance matrix an identity matrix so the
mutations will adapt independently. According to Schwefel, the angles in covariance matrix

should be mutated according to normal distributione,,, =, +2,, Z, eN(O,ﬂz), and

values of 8 are chosen according to experiments.
Aforementioned observations are based on single mutation operator, but it is not
uncommon for ES to include several different mutation operators, ruled by probabilities.

Constraint handling

Handling feasibility constraints is an important issue for real-life usage of the optimization
algorithm. Phenotypic nature of the ES enables constraints handling in a very natural way.
During mutation phase, individuals can be checked for feasibility and discarded if they don’t
conform to constraints, and a replacement offspring is being generated until a feasible one is
found. Another approach is to create mutation operators so that infeasible descendant
cannot be created. This, however, might be a time-consuming solution so another approach
is to penalize unfit individuals, lowering their level of fitness so that selection effectively
eliminates these individuals. This extends to all types of algorithms relying on fitness
measure and selection.
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Evolutionary Programming

Introduction

Evolutionary programming was devised by Lawrence J. Fogel in 1960. At the time, artificial
intelligence was mainly concentrated around heuristics and simulation of primitive neural
networks. Fogel viewed these approaches as limited, since they model humans instead of
the evolution process. L. Fogel perceived the evolution process as the process that produces
creatures of increasing intellect, and intelligence to be based on adapting behavior to meet
goals in a range of environments. Prediction was viewed as a key ingredient to intelligent
behavior. Based on this, L. Fogel conducted a series of experiments on the use of simulated
evolution of finite state machines to forecast nonstationary time series, whilst respecting
arbitrary criteria. These experiments were published in a series of publication during the
1960s.

The evolutionary problem was defined as evolving an algorithm (a program) that would
operate on sequence of symbols and produce an output symbol that maximizes the
algorithm’s performance in light of the next symbol to appear in the environment and a well
defined payoff function. A population of finite state machines is exposed to the environment
and each output symbol is compared with the next input symbol, and then the worth of
prediction is measured with respect to the payoff function. Average payoff per symbol
indicates the fitness of the machine. Offspring machines are created by random mutations of
the parent machines, and the machines that had the greatest payoff became parent
machines in the next generation.

The initial efforts of L.J. Fogel indicate some of early attempts to use simulated evolution to
perform prediction, include variable-length encodings of population members, use
representations that can take a form of sequence of instructions (a program), incorporate a
population of candidate solutions (more than one) and coevolve evolutionary programs.

The general procedure of EP was successfully applied to problems in prediction,
identification and automatic control. In mid-1980s the general EP procedure was extended
to alternative representatives, beside finite state machines, including ordered lists for
traveling salesman problem and real-valued vectors for continuous function optimization. In
turn, this led to other applications in route planning, optimal subset selection and training
neural networks. The internal self-adaptation of mutation variances of greatest importance
for evolutionary programming’s efficiency and it was investigated in works by D. Fogel
throughout the 1990s. Over the 1990s the contacts were made between EP community and
ES community and later the works in EP have diversified in even more directions.

Distinction and similarities between ES and EP

Like ES, EP is a phenotypic method [22]; it relies on phenotypic description of an individual
instead of its genetic representation. David Fogel’s article [19] in particular emphasizes that
the evolutionary programming stresses behavioral change at the level of species, whereas
the evolution strategies stress behavioral changes at the phenotypic level of single
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,u+/7,)

The most exaggerated traditional difference between evolution strategies and evolutionary
programming is related to the form of selection. While ES traditionally included elitist
selection, where the best individuals at each generation is preserved and selected into the
next generation, the EP traditionally preferred selection by stochastic tournament. The
simplest version of stochastic tournament selection T(1,2) is the one that randomly samples
two individuals from the population, and with externally fixed probability, selects the one
with better fitness for the next generation. This is repeated until the required number of
offspring is generated. Other kinds of tournament selections exist, like T(m,n) where the best
m out of n individuals are selected. The first tournament method introduced in EP was
slightly different: one solution competes with other solutions in pair-wise comparisons, like
in sports tournaments, and a win is awarded to better solution or awarded probabilistically
according to chosen formula. After that, the solutions with most wins become parents in the
following generation.

Some models of EP, however, abandoned the stochastic nature of selection and turned to
pure elitist processes, simply selecting A best individuals to form the following generation.
There are, of course, also ES that use stochastic tournament selection and EP with elitist
selection. The EP-community also developed self-adaptive strategy, which can be related to
the one emerged from ES. Evolution of the mutation strength parameter is governed by rule
Oy = &0, where § is a random number given by £=1+7N(0,1)and 7 is externally fixed

learning parameter. This relates to the evolution in ES — lognormal operator, when expanded
to linear term gives precisely that.

Perhaps the biggest distinction between the ES and EP relates to the early days of EP and its
application to evolving machines which in turn led to specialization of EP in mutation
variants, techniques and operators. This lead to fruitful improvements in the areas related to
machine learning and classifier systems. An example of evolutionary programming with self
adaptation is presented in [21] and [22] — the basic theoretical background of self-
adaptation features of the EP remains similar to those of ES.
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Particle Swarm Optimization

Introduction

The particle swarm optimization (PSO), in comparison the evolutionary programming and
evolution strategies, is a newer method. First version of particle swarm optimization was
presented in 1995 by James Kennedy and Russell Eberhart [23]. It was discovered through
simulation of a simplified social model, and has roots in two main methodologies — it closely
ties to artificial life: bird flocking, fish schooling and swarming theory, but even though it has
emerged from different field, relates to evolutionary algorithms.

Bird flocking was an interesting field of research and simulation. Most models of flocking
behavior relied on manipulation of inter-individual distances — the synchrony of flocking
behavior was seen as a function of birds’ efforts to maintain an optimum distance between
themselves and their neighbors. On the other hand, sociological investigation of swarm
behavior suggested that individual members of the swarm can profit from discoveries and
experience of other swarm members, or in other words — social sharing of information
provides an evolutionary advantage. This was the fundamental hypothesis for development
of particle swarm optimization, motivated by a wish for developing a model of human social
behavior. Human behavior is, of course, far more complicated than bird flocking or fish
schooling — besides moving in three-dimensional space, humans change in multidimensional
abstract space, collision free.

The conceptual development of PSO began as a simulation of simplified social milieu. The
original idea was to simulate choreography of bird flock in search for food — the simulated
birds were trying to find the best feeding position in two-dimensional space. Each position in
the search space has a fitness function.

First methods were using nearest-neighbor velocity matching. Later the “cornfield” was
introduced and the space was valued by means of a fitness function — each point in space
has a value that measures the “goodness” of the point, in this case —amount of food.
Moreover, i-th bird in the group knew the globally best feeding position found by some
member of the groupp,, but also remembered the best feeding position that it has found

itselfp, . The difference between current position and these positions was multiplied by a

random factor and added to current velocity of the bird. This has changed the visual
appearance of the flock in the simulation, and finally the algorithm was named particle
swarm. Both p, and P, have very significant role in explanation of PSO model. Conceptually,

p, resembles autobiographical memory, as each individual remembers its own experience —
and it tends to return to the place that most satisfied it in the past. On the other hand p,is

similar to publicized knowledge, a group norm or standard which individuals seek to attain.
Incremental influence of p; and p, is also significant — dominant influence of p; (private

best) results in excessive wandering through search space, whereas dominant influence of
P, can trap the swarm in the local optima. A delicate balance between conservative testing
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of known regions and risky exploration of the unknown is required. The experiments were
conducted on a model of a flock and later changed to multidimensional form.

The PSO outline is following: firstly, the positions and velocities of each particle in the swarm
are chosen randomly. In each step, p, and p, are updated. Afterwards, velocities of particles

are updated. The initial version of updates velocities of the particles in each algorithm step
according to this formula:

View =Vie +2:0-(p; —P)+ 29, (P, —P)

where ¢ is a random number sampled from uniform distribution and p current position of
the particle. This in essence propels the individual to weighted average of p; and p,.

The particle swarm can be viewed as a mid-level form of artificial life, occupying the space
between evolutionary search which takes eons and neural processing that happens in order
of milliseconds. The usage of fitness concept and relying on stochastic processes strongly
relates it to evolutionary computation, but the uniqueness of PSO was ‘flying’ of potential
solutions through hyperspace and accelerating towards better solutions, while other
evolutionary computation methods operate directly on potential solutions represented as
locations in hyperspace.

Particle trajectories, constriction, space of states

Particle swarm optimization implementations have proven that the algorithm performs well
— empirical evidence accumulated that the algorithm is very useful tool for optimization, but
it wasn’t adequately explained how it works until much later. Insights in algorithm behavior
[24] indicated that the algorithm is susceptible to explosion — movement of particles towards
infinity. The attempts to avoid this behavior were mostly related to limiting the maximum

particle speed by setting the upper limit for||v|| .

Maurice Clerc and James Kennedy’s article from 2002 [25] presents a significant theoretical
breakthrough in analysis of PSO giving the generalized model along with methods for
controlling convergence properties. The analysis starts with highly simplified version of the
particle swarm. The algorithm is approached from the point of view of a particle.

The analysis begins with deterministic version of algorithm — the swarm is reduced to single
particle, the problem is made one-dimensional and the equations are further simplified by
making the random number and the so-far-found best position constant. Using these
simplifications, the system of equations is:

{vt+l =V, +9-(pP-X)
Xiyg =X TV,
where p and ¢ are constant. Substituting y = p — X gives
{Vm =Vi @Y,

X =V +(1_§0)' Yi



The analysis starts with algebraic point of view — discrete time domain. The matrix of given
system is

1
M = ¢
-1 1-¢

and the eigenvalues of the system are

P NP 40
2 2

2

@ NP -4
2 2

e =1-
e,=1-

Details can be found in the original article [25]. Obviously, the value of =4 is important.
Depending on the chosen value of ¢ trajectory of the particle can be cyclic or quasi-cyclic for
<4, strictly monotonously increasing if that is not satisfied, with somewhat deceptive
behavior for =4 in first iterations. These conclusions derive from highly simplified model
and discrete time. Switching to continuous time domain and the analytic point of view gives

the second-order differential equation:
o%v ov
EJF In(elez)EJr In(e;)In(e,)v=0

where e; and e, are the roots of 4> + (9 —2)A+1=0:

o1 2 N9 —40
_

2 2
2
—4
 =1-2- 30t

General solution for v is thenv(t) = ¢, +c,e;, and similar expression is produced for y(t)
1

y(t) = —(Clelt (e, —1) +c,e (e, —1)) where coefficients c1 and c2 depend on initial values of v
¢

and y (for t=0).
When e; is not equal to e, (@ # 4), we have:

. _—0¥(©)-2-e,)V()
' €€
L _ oy +(-¢)V(©)
i €, -6
For p =4
v(0)=c, +c,
) ¢, + ¢, 50 V(0) +2y(0) = 0 must be satisfied to prevent discontinuity.
yl)=—-———7—
2



Considering expressions e; and e, and eigenvalues of the matrix M given above, the same
discussion about the sign of (gpz —4(0) can be made about the existence of cycles. This time

analytic point of view with continuous time provides the guideline for preventing explosion
of the particle swarm: max(|el|,|e2|) >1

More general implicit representation (IR) is produced by adding five coefficients
{a,,&’, ;/,5,77} that define the system in five-dimensional space. Using these coefficients, the

system becomes
{Vm =av, + Sy,
Yo = =V + (6 -79)Y,
@R,
Vte N,{yt,vt} e R?

The matrix of the system is

1 a ﬂ¢ ' ! . .
M'= where g and e, are its eigenvalues.
~y O-ng

The explicit (analytic) representation is
vt)=c (&) +c,(8,")
1 t
t)=—-c (&) (e, ~a)+c,(e,")'(e,-
YO=o(a (@) @a)e(e) € -a)

peR  VteN ,{y(t),v(t)} eR?
The coefficients are dependent on initial values of y and v.

_ Py~ (a—e,)V(0)

C,

€, -6
. _ Bey(0)+(@—e ()
2~ \ \

€, —€

The constriction coefficients y,and y, are defined by

el :1_24_—“(02_4(0

e
{el A5 where 2 2 are the eigenvalues of the original system.
e, = ¥.e 2_4
2 =22 e, —1-L_N# 40
2 2

The implicit representation considers t as an integer and v(t) and y(t) are real numbers,
whereas for explicit representation these are real if and only if t is an integer. However — the
above equations are defined for anyt € R", so v(t) and y(t) can be true complex numbers.
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This enables visualizing the algorithm performance in five-dimensional space of states.
Further details and relations linking the values of five added coefficients are given in the
original article.

There are several particular classes of system coefficients that are particularly interesting.

a
class 1' model { P , class 1" a=f=y=n and class 2
y=90=n

2’

Br=n
{a =f=20
model .
n=2y
Depending on the chosen parameter set, the system might have a discontinuity in ¢ due to
the presence of square root in the eigenvalues. To have a completely continuous system, the

discriminant must be positive. By taking into account that the values must be positive to be
plausible, this renders the following condition

By <n(a->5)

The general criterion for convergence becomes
‘el‘ <1
‘e'z‘ <1

Class 1 model, {

v(t)and y(t) are true complex numbers and the whole system can be represented in a 5-
dimension space (Re(y), Im(y),Re(v),Im(v),p).
By investigating the system without complex values, analyzing only (Re(y),Re(v),¢), it is

obvious that system exhibits spiral convergence for <4, difficult convergence for ¢
approximately 4 (there is a discontinuity for ¢=4), and quick, almost linear convergence for
p=4.

When observed in the complex space, the oscillating behavior seen just by looking at the
real part of velocities and positions actually becomes continuous spiral movement. The
attractor is dependent on the constriction coefficients.

All these conclusions were taken on grounds of constant ¢. After generalization —returning
to random values of ¢, the PSO with one constriction coefficient has the following form:

v(t+1) = 7 (V) + (P, —X(V) + 0,(p, — X(1)))
X(t+1) =v(t+1)+x(t)

The constriction must be chosen carefully — even though the appropriate choice of
constriction coefficients ensures convergence, i.e. that the velocities of the particles will end
at being equal to 0, but it does not guarantee that the convergence point is the optimum.
Therefore, constricting the system too strong means reducing its “oscillation” completely
and even if it prevents explosion, it would obviously also prevent exploration of the search
space. In other words, moderately constricting the system by allowing the particles to
explore the search space should be the chosen approach.
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The particle swarm using constriction coefficients in principle does not differ from the
particle swarm without them — the coefficients {a,ﬂ,}/,d,n} are calculated prior the

algorithm start. The main benefit of the aforementioned theoretical research is that the
particle system’s explosion can be controlled without resorting to any arbitrary or problem
specific parameters. In other words, explosion is controlled at the algorithmic level and
convergence of the algorithm is assured.

Usage of constriction does not excessively modify the original algorithm — the coefficients
are calculated upon the algorithm start from the chosen constriction type and the
eigenvalues of the particle system matrix. Constriction can assure convergence, whereas

To be convergent, the constricted system makes limitation of the velocities unnecessary. A
liberal limit of velocity, though, helps convergence — as proven by Eberhart and Shi [26]. The
liberal limit means, for instance, that the particle with maximum speed can travel across the
whole search space in a single iteration. Constriction coefficients have been developed from
the individual particle’s point of view and regulating the constriction means regulating
dynamic characteristics of the particle swarm, tuning exploration versus exploitation.
Moreover, some earlier theoretical observations have quite detailed explanation in the 5-
dimensional space of states.

Informed swarms and communication schemes

PSO reportedly works well due to its social dimension — the real strength of the swarm is
derived from the interaction among particles as they search the space collaboratively. When
the collaborative effect is removed from the algorithm, i.e. the particles do not know
anything about the global best position; the algorithm performance is heavily degraded [27].
In these versions of the PSO there were no communication connections between particles.
Since the communication was neglected, the model was called cognitive model: the particles
relied only on the information they gathered alone.

Recent research in the field of particle swarm optimization was directed towards
investigating viable communication schemes. Claiming that premature convergence has to
do with too fast propagation of information and that a lot of information gathered by other
particles, not only the one that has currently found the best particle, Rui Mendes and James
Kennedy [28] have introduced a fully informed particle swarm (FIPS). The canonical version
of the particle swarm algorithm works by searching iteratively in a region defined by each
particle’s best previous success, the best previous success among the neighboring particles
and the previous velocity. Their work starts from the Clerc’s constricted particle swarm.

v(t+1) = 7 (V) + o (p, —X(V) + 0,(p, — X(1)))

X(t+1) =v(t+1)+x(t)
The variation in the “classic” particle swarm introduced in several ways — by random
numbers ¢, the difference between the current and the previous best position, the updating

of the global best position. Actually, the most important source of variation in a traditional
particle swarm is the difference between particle’s previous best p; and global best py, while
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random weighting only keeps the particle searching between and beyond region defined by
these two points.

Traditional particle swarm chooses one neighbor to be the source of influence and ignores
the other. On the contrary, fully informed particle swarm takes into account best positions
and distance to all the particles in neighborhood — hence the name fully informed particle
swarm. All the members of the neighborhood contribute to velocity adjustment.

The neighborhood size and sociometry of the neighborhood hence becomes more important
— it determines how diverse the influences will be. The topological structure of the
population controls the exploration/exploitation behavior of the swarm. In other words,
since the behavior of each particle is affected by local neighborhood, the topology affects
the search at the low level by defining neighborhoods.

The topologies can be represented as graphs, its nodes are particles and vertices represent
links between the particles able to exchange information directly. Several topologies are of
particular interest:

e all or star topology, developed in the first days of PSO, when every particle is directly
connected to any other particle, the graph is fully connected so the information
about the best position spreads very quickly

e ring topology, the common alternative to the previous, where the graph has a
minimum number of edges, the information travels slowly since each particle is
linked only to its direct neighbors

e four clusters topology, where the particles are divided in 4 cliques connected by
several gateways, representing isolated communities where few individuals have
acquaintance outside the group

e pyramid — three dimensional wireframe pyramid, it has the lowest average distance
and the highest first and second degree neighbors.

The experiments show that introducing more information improves the performance classic
particle swarm — however, there is still both theoretical and empirical research to be done.
Generally, increasing the neighborhood size seems to deteriorate the performance of the
swarm, so the all topologies perform the worst, compared to others. Interestingly, including
the particle’s own best sometimes seems to have a negative effect — the informed swarm
that excludes particle’s own best information performs better. This might indicate that the
information already contained in the vector of speed doesn’t need to be further emphasized
by including the particle’s best location. Another promising characteristic of the FIPS is that it
is relatively independent of the initial initialization — the asymmetrical initialization of
particle swarm to the lesser extent degrades the fully informed swarm performance.

FIPS emphasizes [29] that the best-of-neighborhood location information is not enough —
the information conveyed by distances between particles is also participating and the
particle is not being drawn towards the best-of-neighborhood, instead it is being adjusted by
a kind of average difference between each neighbor’s previous best and the target particle’s
current position. However, recent work shows that this approach might have degrading
effect in some fitness landscapes so that the “classic” methods outperform the FIPS. The
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EPSO — Evolutionary Particle S warm Optimization

Introduction

The shortest definition of evolutionary particle swarm algorithms is: EPSO algorithms are
evolutionary methods that borrow the movement rule from PSO and use it as a
recombination operator that evolves under pressure of selection. By using this hybrid
approach, an algorithm is built that has already empirically proven its superiority over
classical approaches, both in evolutionary algorithms and PSO.
Hybrid algorithms are common in the soft-computing — it is often hoped that the hybrid will
combine the good traits of both methods and therefore build a more powerful method. It
might seem easy and convenient to describe EPSO simply as a variant of particle swarm
optimization, using the vocabulary and concepts of PSO to describe EPSO. However, EPSO
not only has ancestry in PSO — there are mechanisms in EPSO that are clearly related to
those in evolutionary algorithms, and keeping that perspective on EPSO should lead to
better understanding on how and why it does work.
The basic outline of EPSO is:
e replication - each particle is replicated r times
e mutation - each particle has its strategic parameters mutated
e reproduction - each mutated particle generates an offspring through
recombination, according to the particle movement rule, described below
e evaluation - each offspring has its fitness evaluated
e selection - by stochastic tournament or other selection procedure, the best
particles survive to form a new generation, composed of a selected descendant
from every individual in the previous generation

Recombination and movement rule

Given a particle in generation k, a new particle in generation k+1 is reproduced using the
following rule, similar to PSO rule:

Xi(k+l) — Xi(k) + Vi(k+l)

k * k * * *
Vi( W :\Nilvi( ) +W,, (P, _bi)+\NiB(pg -X;)P
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where the values are
p, — best point found by particle i in its past life up to the current generation

P, - best overall point found by the swarm of particles in their past life up to the current
generation

Xi(k) — location of particle i at generation k

v =x® —x P _is the velocity of particle i at generation k

wi; — weight conditioning the inertia term (the particle tends to move in the same direction
as the previous movement)

wj; — weight conditioning the memory term (the particle is attracted to its previous best
position)

wiz — weight conditioning the cooperation or information exchange term (the particle is
attracted to the overall best-so-far found by the swarm).

P — communication factor, a diagonal matrix affecting all dimensions of an individual,
containing binary variables of value 1 with probability p and value 0 with probability (1-p);
the p value, set as an external parameter, controls the passage of information within the
swarm and is 1 in classical formulations. This reproduction is illustrated in the following
figure.

Figure 1 — Reproduction rule of EPSO

The symbol * in the formulation indicates that these parameters will undergo evolution
under a mutation. The recombination rule is called movement rule in PSO, but it is a form of
intermediary recombination operator.

If using the perspective of evolutionary algorithm, the recombination operator is specific due
to the choice of parents: the global best, the best particle ancestor and the direct parent.
This means that, for practical purposes, this method includes a provision for elitism, because
the particle best ancestor and the global best are kept from generation to generation.
Moreover, in this method, the recombination operator is adaptive and evolving, instead of
being fixed.
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Mutation of strategic parameters

The basic rule for mutating the strategic parameters is inspired by similar rule in
evolutionary algorithms, where it has proven its efficiency:

W, =w, [logN(0,)]
The weights are mutated by means of lognormal mutation conditioned with learning

parameter T.
Global best solution is also disturbed randomly:

Py =P, +W,N(0,1)
where wj; is the fourth strategic parameter associated with each particle (or individual, in
vocabulary of evolutionary algorithms). This strategic parameters controls the disturbance of

up-to-now global best, so that its neigborhood could be explored, assuming that the real
global optimum is not yet found during the process.

Control of communication among particles

As it was mentioned above, in the research of PSO the topology plays a significant role for
the algorithm efficiency. In EPSO, stochastic scheme oscillates between purely cognitive
model and the star model where every particle is aware of global optimum. This is not
adaptive scheme of communication, but an alternative way of taking advantage of slower
propagation of information between particles. Further research will be done in this
direction.

Constrained selection and inherent elitism

In all versions of the EPSO family so far, the selection operator does not act freely on the
whole population. The replication phase generates r clones of a particle (including in this
count the original one); these undergo mutation in their strategic parameters and then the
recombination operator (movement rule) generates r offspring in r different locations.

The selection operator acts on these descendants and chooses one survivor for the following
generation. This procedure is repeated for all individuals.

In a selfish or cognitive model, with no communication among particles, this would result in
n independent evolutionary processes, but the communication term of the recombination
operator avoids this. Therefore, it is not a parallel evolutionary method — but it could be
seen as a parallel method for particle swarms. One also observes that elitism is present in
the model, because the information about the best ancestors is kept and used in
recombination to form new particles. When an individual does not directly generate
descendants but contributes to the formation of new individuals via recombination, we can
call it dormant. The following figure illustrates the process of selection.
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Figure 2 - lllustration of reproduction/ selection process for r=2

Benefits of EPSO

The convergence of both ES and EP has been theoretically investigated. The generation of
offspring is governed with mutation and recombination, but the push towards the optimum
is the role of selection operator. Classical PSO schemes, on the other hand, rely on the
reproduction scheme whereas selection is trivial — one parent generates one descendant. It
is the reproduction rule — or, in vocabulary of PSO, movement rule that assures the progress
towards the optimum.

EPSO exploits both of these mechanisms in sequence, each one with its own probability of
producing better individuals and also better group on average. If EPSO is seen as a
evolutionary algorithm, its recombination is already biased to push the algorithm towards
the optimum. Selection takes place afterwards, acting on generation that’s already better
than the parent one and having the additive effect.

Self-adaptation is another important characteristic of EPSO — it avoids in large scale the need
for fine-tuning the parameters of the algorithm. These characteristics in conjunction give
robustness to EPSO models and make it applicable to real-life problems [31].

Directions of theoretical research for EPSO

Evolutionary algorithms have proved to be powerful meta-heuristic solvers when applied to
complex problems and self-adaptive models have proved to improve the efficiency of the
algorithms in most cases. In the evolutionary algorithms, self-adaptive characteristics are
usually given to them by manipulating (under selection) mutation rates. The EPSO
algorithms give self-adaptive characteristics by manipulating (under selection) the
recombination operator. Therefore, when looking from perspective of EA, EPSO represents
an evolutionary algorithm with the recombination rule from particle swarm optimization,
reinterpreted as a form of intermediate recombination. The pressure towards the optimum
is given not only by selection mechanism but also by the properties of the reproduction
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mechanism. EPSO can also be viewed as a specific case of particle swarm optimization
algorithm with evolving weights and stochastic disturbance of communication schemes.
Considering the theoretical research of EPSO, it can be done from two points: either by
applying the methods and measures from the world of evolutionary algorithms (for instance,
the progress rate), or by extending the work in researching the PSO.

Both of these research directions provide incentives for research related to EPSO — however,
the evolutionary point of view seems more promising. EPSO has several characteristics that
could hardly be described from the world of PSO, most notably the creation of multiple
offspring. Measures and analyses, similar to progress rate analyses in the world of EA, should
be the right direction for investigating the world of EPSO. The PSO point of view, isn’t
unusable — it provides promising fields for improvement regarding sociometry and
communication schemes between particles. These could be exploited in future versions of
EPSO, so an important direction of research also relates to communication schemes in EPSO
and possibility of evolving these schemes, finding thus the optimal way of propagating the
information through the swarm.
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